Semantics and Domain theory

Exercises 12

- 1. We consider the model definition as explained in the lecture. (See Definition 57 of Berline; so we assume that the interpretation $[\![-]\!]_{\rho}$ is well-defined.) Assume $G \circ A = \mathrm{id}_M$. Show that the η -rule holds in the model. (The η -rule says: $\lambda x.Nx = N$ if $x \notin \mathrm{FV}(N)$.) NB. You may need to use the following property (without proof): If $\rho(x) = \rho'(x)$ for all $x \in \mathrm{FV}(M)$, then $[\![M]\!]_{\rho} = [\![M]\!]_{\rho'}$.
- 2. Which of the following sets are complete lattices.
 - (a) The set of flat natural numbers \mathbb{N}_{\perp} .
 - (b) The set $\mathcal{P}_{fin}(\mathbb{N})$ of finite subsets of \mathbb{N} .
 - (c) The set Ω (= $\mathbb{N} \cup \{\omega\}$, with the ordering we have seen before).
 - (d) The set of monotone functions from $\mathbb{B}_{\perp}^{\top}$ to $\mathbb{B}_{\perp}^{\top}$. (Remember that the set of flat booleans with a top element added, $\mathbb{B}_{\perp}^{\top}$, is a complete lattice.)
- 3. Complete the proof of Proposition 3.1.7. That is, show that in a complete lattice (D, \sqsubseteq) , if we define

we that in a complete factor
$$(D, \subseteq)$$
, if we define

then $\prod X$ is indeed the greatest lower bound (also called the inf) of X.

4. Prove the correctness of Definition 3.2.5. To prove this, you have to show that the function

$$\lambda d. \llbracket P \rrbracket_{\rho(x:=d)}$$

is continuous for every P and ρ . (You may assume that F and G are continuous and all the other results about continuity from the notes.)

- 5. At the lecture, we have seen the interpretations in D_A of $\mathbf{I} (= \lambda x.x)$, $\mathbf{K} (= \lambda x.\lambda y.x)$ and \mathbf{II} .
 - (a) Compute the interpretation of $\lambda x.x.x.$
 - (b) Show that $[\![\mathbf{KI}]\!] = \{(\beta, (\gamma, c)) \mid c \in \gamma\}$ (without doing a β -reduction first).
- 6. Let Y be an element of D_A and let ρ be a valuation with $\rho(y) = Y$.
 - (a) Compute in D_A the interpretation of $\lambda x.y.x$ by expressing $[\![\lambda x.y.x]\!]_{\rho}$ in terms of Y.
 - (b) Conclude that the η -rule does not hold in D_A . (The η -rule says that $\lambda x.M x = M$ if $x \notin FV(M)$.)
- 7. Use the result of the following exercise ($\llbracket \Omega \rrbracket = \emptyset$) to
 - (a) compute the interpretation of $\lambda y.\Omega$ in D_A ,
 - (b) compute the interpretation of $\lambda y.y \Omega$ in D_A .
- 8. [Challenging] Show that the interpretation of Ω (= $(\lambda x.x x)(\lambda x.x x)$) in D_A is \emptyset .

(Hint: From a $c \in [\Omega]$ you can construct an infinite sequence $(\alpha_i)_{i \in \mathbb{N}}$ with $(\alpha_{i+1}, c) \in \alpha_i$ for all i, which is impossible in D_A .)