Semantics and Domain theory Exercises 13

- 1. Prove that, for M a closed λ -term, if M has a head-normal-form, then there is a sequence of terms P_1, \ldots, P_n such that $M P_1 \ldots P_n =_{\beta} \mathbf{I}$. (For closed terms, the reverse implication also holds, so this criterion is equivalent to having a hnf. This is where the terminology solvable comes from.)
- 2. Define $T := \lambda x \cdot x \cdot y (x \cdot x)$ and $M := T \cdot T$.
 - (a) Draw the Böhm tree of M.
 - (b) Describe the set of approximations of M, $\mathcal{A}(M)$.
- 3. Remember that the **S** combinator is defined as $\lambda x y z . x z (y z)$.
 - (a) Draw the Böhm tree of **SSS**.
 - (b) Give the approximations of \mathbf{SSS} , that is, describe $\mathcal{A}(\mathbf{SSS})$.
- 4. Suppose that the term B satisfies B = x B B. Draw the Böhm tree of B.
- 5. (a) Give a term P that has the Böhm tree given below.
 - (b) (Hard) Give a term Q that has the Böhm tree given below.

6. Let M and N be λ -terms that satisfy the following equations

$$M = \lambda xy.x (M x y) (M x y)$$
$$N = \lambda xy.x (N x x) (N x x)$$

Prove that M = N in D_A .