Semantics and Domain theory Exercises 8

- 1. (Exercise 6.5.2. of Pitts' notes) Define $\Omega_{\tau} = \mathbf{fix}(\mathbf{fn} x : \tau . x)$
 - (a) Show that $\llbracket \Omega_{\tau} \rrbracket$ is the least element of the domain $\llbracket \tau \rrbracket$.
 - (b) Deduce that $\llbracket \mathbf{fn} x : \tau . \Omega_{\tau} \rrbracket = \llbracket \Omega_{\tau \to \tau} \rrbracket$.
- 2. (a) Compute the denotational semantics of $M = \mathbf{fn} x : \mathbf{bool.} \mathbf{fn} y : \mathbf{nat.if} x \mathbf{then} y \mathbf{else} y.$
 - (b) Define a term P such that $\llbracket M \rrbracket \sqsubseteq \llbracket P \rrbracket$ but $\llbracket M \rrbracket \neq \llbracket P \rrbracket$.
 - (c) Define a term N such that $\llbracket M \rrbracket = \llbracket N \rrbracket$ but $N \not\Downarrow M$.
- 3. Define terms $M, N : \mathbf{nat} \to \mathbf{nat}$ with $\llbracket M \rrbracket \sqsubseteq \llbracket N \rrbracket$ and $\llbracket M \rrbracket \neq \llbracket N \rrbracket$.
- 4. Verify that $\llbracket (\mathbf{fn} x : \sigma.M)N \rrbracket(\rho) = \llbracket M[N/x] \rrbracket(\rho)$ for M, N with $\Gamma \vdash N : \sigma$ and $\Gamma, x : \sigma \vdash M : \tau$ and $\rho \in \llbracket \Gamma \rrbracket$. (Use the result on Slide 62, the Substitution Lemma.)
- 5. Prove Soundness of the operational semantics (Theorem 6.4.1) for the inductive cases \Downarrow_{pred} and \Downarrow_{ifl} . Remember that Theorem 6.4.1 states that for all closed expressions M and V and type τ , if $M \Downarrow_{\tau} V$, then $\llbracket M \rrbracket = \llbracket V \rrbracket$. It is proved by induction on the derivation of $M \Downarrow_{\tau} V$.
- 6. Let

 $P := \mathbf{fix}(\mathbf{fn} \ p : \mathbf{nat} \to \mathbf{bool.} \ \mathbf{fn} x : \mathbf{nat.} \mathbf{if} \ (\mathbf{zero} \ x) \mathbf{then true else} \ p(\mathbf{pred} \ (\mathbf{pred} \ x))).$

Compute $\llbracket P \rrbracket$.

- 7. We give PCF-terms that define the "or" function, taking partiality into account. A PCF-term M defines the domain-theoretic function f if $[\![M]\!] = f$.
 - (a) Give a PCF-term that defines the function $f : \mathbb{B}_{\perp} \to \mathbb{B}_{\perp} \to \mathbb{B}_{\perp}$ given by

$$f(x)(y) := \begin{cases} \bot & \text{if } x = \bot \text{ or } (x = \text{ff and } y = \bot) \\ \text{tt} & \text{if } x = \text{tt or } (x = \text{ff and } y = \text{tt}) \\ \text{ff} & \text{if } x = \text{ff and } y = \text{ff} \end{cases}$$

(b) Give a PCF-terms that defines the function $g: \mathbb{B}_{\perp} \to \mathbb{B}_{\perp} \to \mathbb{B}_{\perp}$ given by

$$g(x)(y) := \begin{cases} \bot & \text{if } x = \bot \text{ or } y = \bot \\ \text{tt} & \text{if } x, y \neq \bot \text{ and } (x = \text{tt or } y = \text{tt}) \\ \text{ff} & \text{if } x = \text{ff and } y = \text{ff} \end{cases}$$