Semantics and Domain theory Exercises 3

NB. A domain is a cpo with a \perp -element.

- 1. Prove that the set of partial functions from X to $Y, X \rightarrow Y$, forms a domain, with the definitions of ordering and lub given on slide 24 of the lecture notes (or the equivalent definitions given at the lecture).
- 2. Which of the following partial orders is a domain? In each case, choose a proper definition of 'lub'; prove your answer. You don't have to prove it is a partial order, but please check for yourself that it is! (In case you haven't done so.)
 - (a) $(\mathcal{P}(\mathbb{N}), \subseteq)$, where $\mathcal{P}(\mathbb{N})$ is the powerset of \mathbb{N} (the set of all subsets of \mathbb{N}) and \subseteq is the usual subset ordering.
 - (b) $(\mathcal{P}_{\text{fin}}(\mathbb{N}), \subseteq)$, where $\mathcal{P}_{\text{fin}}(\mathbb{N})$ is the set of finite subsets of \mathbb{N} and \subseteq is the usual subset ordering.
 - (c) $([0,1], \leq)$, where [0,1] is the unit interval and \leq is the usual ordering on the real numbers.
 - (d) $([0,1] \cap \mathbb{Q}, \leq)$, where \cap is the intersection and \mathbb{Q} is the set of rational numbers.
 - (e) (Σ^*, \sqsubseteq) , where Σ^* is the set of words over the alphabet $\Sigma := \{a, b\}$ and \sqsubseteq is the prefix ordering, defined by $w \sqsubseteq wv$ for all $w, v \in \Sigma^*$.
 - (f) $(\Sigma^* \cup \Sigma^{\omega}, \sqsubseteq)$, where Σ^{ω} is the set of infinite words over the alphabet $\Sigma := \{a, b\}$ and \sqsubseteq is the prefix ordering, defined by $w \sqsubseteq wv$ for all $w \in \Sigma^*, v \in \Sigma^* \cup \Sigma^{\omega}$ and $v \sqsubseteq v$ for all $v \in \Sigma^* \cup \Sigma^{\omega}$.
- 3. Prove that the function $f_{b,C}$ in the definition of the denotational semantics of while b do C (slide 11) is continuous. When is $f_{b,C}$ strict?
- 4. Let $(d_i)_{i\geq 0}$ and $(e_i)_{i\geq 0}$ be chains in a domain (D, \sqsubseteq) . Suppose that $(d_i)_{i\geq 0}$ is majorized by $(e_i)_{i\geq 0}$, that is: $\forall i \exists j (d_i \sqsubseteq e_j)$. Prove that $\sqcup_{i\geq 0} d_i \sqsubseteq \sqcup_{i\geq 0} e_i$.
- 5. Let (E, \sqsubseteq') be a domain and suppose that in the domain (D, \sqsubseteq) , all chains are *eventually constant*, that is: for all chains $(d_i)_{i\geq 0}$ there exists an n such that $d_n = d_{n+1} = d_{n+2} = \dots$ Show that every monotonic $f: D \to E$ is continuous.
- 6. Prove that, given the partial function $f : X \to Y$, the function $f_{\perp} : X_{\perp} \to Y_{\perp}$ is continuous. (Proposition 3.1.1 in Pitts' notes.) Here f_{\perp} is defined by

$$f_{\perp}(d) := \begin{cases} f(d) & \text{if } d \in X \text{ and } f(d) \downarrow \\ \bot & \text{if } d \in X \text{ and } f(d) \uparrow \\ \bot & \text{if } d = \bot \end{cases}$$

- 7. Consider the two-element domain $\mathbf{2} := \{\bot, \top\}$.
 - (a) List all functions $h : \mathbf{2} \to \mathbf{2}$.
 - (b) Which ones are monotonic and which ones are not? Draw a Hasse diagram depicting the ordering of the monotonic functions from 2 to 2.