Semantics and Domain theory

Exercises 4

1. Let (D, \sqsubseteq) be the domain of finite and infinite sequences over $\Sigma:=\{a, b\}$ with \sqsubseteq the prefix ordering. (So $D=\Sigma^{*} \cup \Sigma^{\omega}$.)
(a) Which of the following functions $f: D \rightarrow D$ is monotonic / continuous?
i. $f(s)=s$ with all a 's removed.
ii. $f(s)=a b b a$ if s is finite; $f(s)=s$ if s is infinite.
iii. $f(s)=$ abbas .
iv. $f(s)=a$ if s contains finitely many b 's; $f(s)=b$ if s contains infinitely many b 's
(b) For each of the functions f in (a) that is continuous, compute the least fixed point of f.
2. Let (D, \sqsubseteq) be a domain with some element d_{0} and let $f: D \rightarrow D$ be continuous. Suppose $d_{0} \sqsubseteq f\left(d_{0}\right)$. Prove that $\sqcup_{i \in \mathbb{N}} f^{i}\left(d_{0}\right)$ is a fixed point of f.
3. Let $f, g:(D, \sqsubseteq) \rightarrow(D, \sqsubseteq)$ be continuous functions on domain (D, \sqsubseteq). Prove

$$
\operatorname{fix}(f \circ g)=f(\operatorname{fix}(g \circ f))
$$

(a) by unfolding the definition of fix (slide 29)
(b) by using the properties of pre-fixed point (slide 20) and fixed point (slide 29) and proving
i. $\operatorname{fix}(f \circ g) \sqsubseteq f(\operatorname{fix}(g \circ f))$
ii. $f(\operatorname{fix}(g \circ f)) \sqsubseteq \operatorname{fix}(f \circ g)$
4. (Exercise 3.4.2 of Pitts' notes): Let X and Y be sets and X_{\perp} and Y_{\perp} be the corresponding flat domains. Show that a function $f: X_{\perp} \rightarrow Y_{\perp}$ is continuous if and only if one of (a) or (b) holds:
(a) f is strict, i.e. $f(\perp)=\perp$.
(b) f is constant, i.e. $\forall x \in X(f(x)=f(\perp))$.
5. For the disjoint union of two domains (also called the binary sum of domains), there are two choices: the coalesced sum (or smashed sum) $D+_{c} E$, or the separated sum $D+{ }_{s} E$.
For the coalesced sum, the set $D+{ }_{c} E$ is defined as

$$
\{\perp\} \cup\left\{(0, d) \mid d \in D, d \neq \perp_{D}\right\} \cup\left\{(1, e) \mid e \in E, e \neq \perp_{E}\right\}
$$

For the separated sum, the set $D+{ }_{s} E$ is defined as

$$
\{\perp\} \cup\{(0, d) \mid d \in D\} \cup\{(1, e) \mid e \in E\}
$$

So, the separated sum introduces a new \perp element, whereas the coalesced sum "coalesces (or smashes) them together".
(NB. The 0 and 1 in the pairs have no special significance, apart from being able to distinguish the "elements coming from D " from the "elements coming from E "; we want to define the disjoint union, which should also work, for example, for $\mathbb{N}_{\perp}+\mathbb{N}_{\perp}$.)
Let two domains $\left(D, \sqsubseteq_{D}\right)$ and $\left(E, \sqsubseteq_{E}\right)$ be given.
(a) Define the partial ordering \sqsubseteq on $D+{ }_{s} E$ and give the \perp-element.
(b) Define the partial ordering \sqsubseteq on $D+{ }_{c} E$ and give the \perp-element.
(c) For $\left(f_{i}\right)_{i \in \mathbb{N}}$ a chain in $D+_{s} E$ define $\sqcup_{i \in \mathbb{N}} f_{i}$ and prove that it is the least upperbound.
(d) For $\left(f_{i}\right)_{i \in \mathbb{N}}$ a chain in $D+{ }_{c} E$ define $\sqcup_{i \in \mathbb{N}} f_{i}$ and prove that it is the least upperbound.
(e) Define injections inl : $D \rightarrow D+{ }_{s} E$ and inr : $E \rightarrow D+{ }_{s} E$ that are continuous. (You don't have to prove that they are continuous.)
(f) Define injections inl : $D \rightarrow D+{ }_{c} E$ and inr : $E \rightarrow D+{ }_{c} E$ that are continuous. (You don't have to prove that they are continuous.)
(g) $\left(^{*}\right)$ For F a domain and $f: D \rightarrow F, g: E \rightarrow F$ we want to define a continuous function $[f, g]: D+E \rightarrow F$ such that $[f, g](\operatorname{inl}(x))=f(x)$ and $[f, g](\operatorname{inr}(x))=g(x)$.
Show how to define $[f, g]$ for the case of $D+{ }_{c} E$ and for the case of $D+{ }_{s} E$. For one of these cases, we can only define $[f, g]$ if we place additional requirements on f and g. Which?

