Semantics and Domain theory

Exercises 5

1. Prove that for D a domain and $F:(D \rightarrow D) \rightarrow(D \rightarrow D)$ and $g: D \rightarrow D$ continuous,

$$
\operatorname{ev}(\mathrm{fix}(F), \operatorname{fix}(g))=\sqcup_{k \geq 0} F^{k}\left(\perp^{\prime}\right)\left(g^{k}(\perp)\right)
$$

where \perp is in D and \perp^{\prime} is in $D \rightarrow D$ and ev is the evaluation function (of Proposition 3.3.1):

$$
\operatorname{ev}(f, d):=f(d)
$$

for $f: D \rightarrow D$ and $d: D$, so ev : $(D \rightarrow D) \times D \rightarrow D$.
2. We define two variants of a functional $F:\left[\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right] \rightarrow \mathbb{B}_{\perp}$ that, given a continuous function $f: \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$, checks if f has a fixed point in \mathbb{N}. (That is: an $n \in \mathbb{N}$ for which $f(n)=n$).

$$
\begin{aligned}
& F_{1}(f):= \begin{cases}\mathrm{tt} & \text { if } f \text { is total and } \exists n \in \mathbb{N}(f(n)=n) \\
\mathrm{ff} & \text { if } f \text { is total and } \forall n \in \mathbb{N}(f(n) \neq n) \\
\perp & \text { if } f \text { is not total }\end{cases} \\
& F_{2}(f):=\left\{\begin{array}{cl}
\mathrm{tt} & \text { if } \exists n \in \mathbb{N}(f(n)=n \wedge \forall m<n(f(m) \neq m, \perp)) \\
\perp & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

NB. " f is total" means that $\forall n \in \mathbb{N}(f(n) \neq \perp)$.
(a) Prove that both F_{1} and F_{2} are monotonic (in case this hasn't been checked in the lecture already).
(b) Prove that one of the F_{i} does not preserve lubs (and thus is not continuous).
(c) Prove that one of the F_{i} preserves lubs (and thus is continuous).
3. Let $P: D \rightarrow \mathbb{B}_{\perp}$ and $g: D \rightarrow D$ be continuous. Define $f: D \times D \rightarrow D \times D$ by

$$
f\left(d_{1}, d_{2}\right)=\operatorname{If}\left(P\left(d_{1}\right),\left(g\left(d_{1}\right), g\left(d_{2}\right)\right),\left(g\left(d_{2}\right), g\left(d_{1}\right)\right)\right)
$$

Show that for $\operatorname{fix}(f)=\left(u_{1}, u_{2}\right)$, we have $u_{1}=u_{2}$. (Use Scott induction.)
4. [Borrowed from Pitts] We consider the two-element domain $2:=\{\perp, \top\}$. For (D, \sqsubseteq) a domain and $d \in D$, define $g_{d}: D \rightarrow \mathbf{2}$ by

$$
g_{d}(x):= \begin{cases}\perp & \text { if } x \sqsubseteq d \\ \top & \text { if } x \nsubseteq d\end{cases}
$$

(a) Prove that g_{d} is continuous (for any $d \in D$).
(b) Let E be some domain. Prove that $f: E \rightarrow D$ is continuous iff $g_{d} \circ f$ is continuous for all $d \in D$. (You may assume that the composition of two continuous functions is continuous.)
5. Show that the following two definitions of the ordering between continuous functions $f, g: D \rightarrow E$ (see Slide 35) are equivalent.
(a) $f \sqsubseteq g:=\forall d \in D\left(f(d) \sqsubseteq_{E} g(d)\right)$.
(b) $f \sqsubseteq^{\prime} g:=\forall d_{1}, d_{2} \in D\left(d_{1} \sqsubseteq_{D} d_{2} \Rightarrow f\left(d_{1}\right) \sqsubseteq_{E} g\left(d_{2}\right)\right)$.

