Semantics and Domain theory Exercises 6

- 1. (a) Show that if S and T are chain-closed, then $S \cup T$ is chain-closed.
 - (b) Show that if S_i is chain-closed for every $i \in I$, then $\bigcap_{i \in I} S_i$ is chainclosed.
- 2. (Exercise 4.4.2. of Pitts' notes) Give an example of a subset S of $D \times D$ that is not chain-closed, but which satisfies:
 - (a) $\forall d \in D, \{e | (d, e) \in S\}$ is chain-closed
 - (b) $\forall e \in D, \{d | (d, e) \in S\}$ is chain-closed.

[Hint: consider $D = D = \Omega$, the cpo in Figure 1.] (Compare this with the property of continuous functions given on Slide 33 of Pitts' notes.)

- 3. The collection of chain-closed sets is not closed under arbitrary union. (It is not the case, in general, that $\forall i \in I(S_i \text{ is chain closed}) \text{ implies } \bigcup_{i \in I} S_i \text{ is chain-closed.}$)
 - (a) Conclude this from the previous exercise.
 - (b) Conclude this by directly constructing a counterexample in Ω .
- 4. Prove that for $f: D \to E$ monotonic,

 f^{-1} preserves chain-closed sets $\Rightarrow f$ is continuous,

where f^{-1} preserves chain-closed sets means that, for all $S \subseteq E$, if S is chain-closed, then $f^{-1}(S)$ is a chain-closed subset of D.

- 5. Show that the untyped λ -term $\omega (= \lambda x.x x)$ is not typable in PCF. That is: show that there are no τ_1 and τ_2 such that $\vdash \mathbf{fn} x : \tau_1 . (x x) : \tau_2$.
- 6. (a) Suppose that the term mult : $\mathbf{nat} \to \mathbf{nat} \to \mathbf{nat}$ defines multiplication in PCF. Give a PCF term that defines the exponentiation function exp : $\mathbf{nat} \to \mathbf{nat} \to \mathbf{nat}$. (So $\exp n m$ should denote n^m ; you don't have to prove that exp correctly defines exponentiation.)
 - (b) Let a PCF term $p : \mathbf{nat} \to \mathbf{nat}$ be given. Define a term $N : \mathbf{nat}$ that denotes the smallest number n such that p(n) = 0 and $\forall i < n(p(n) > 0)$. (You don't have to prove the correctness of N.)