Semantics and Domain theory

Exercises 4

- 1. Let (D, \sqsubseteq) be the domain of finite and infinite sequences over $\Sigma := \{a, b\}$ with \sqsubseteq the prefix ordering. (So $D = \Sigma^* \cup \Sigma^{\omega}$.)
 - (a) Which of the following functions $f:D\to D$ is monotonic / continuous?
 - i. f(s) = s with all a's removed.
 - ii. f(s) = abba if s is finite; f(s) = s if s is infinite.
 - iii. f(s) = abbas.
 - iv. f(s) = a if s contains finitely many b's; f(s) = b if s contains infinitely many b's
 - (b) For each of the functions f in (a) that is continuous, compute the least fixed point of f.
- 2. Let (D, \sqsubseteq) be a domain with some element d_0 and let $f: D \to D$ be continuous. Suppose $d_0 \sqsubseteq f(d_0)$. Prove that $\bigsqcup_{i \in \mathbb{N}} f^i(d_0)$ is a fixed point of f.
- 3. Let $f, g: (D, \sqsubseteq) \to (D, \sqsubseteq)$ be continuous functions on domain (D, \sqsubseteq) . Prove

$$fix(f \circ g) = f(fix(g \circ f))$$

- (a) by unfolding the definition of fix (slide 29)
- (b) by using the *properties* of pre-fixed point (slide 20) and fixed point (slide 29) and proving
 - i. $fix(f \circ g) \sqsubseteq f(fix(g \circ f))$
 - ii. $f(\operatorname{fix}(g \circ f)) \sqsubseteq \operatorname{fix}(f \circ g)$
- 4. (Exercise 3.4.2 of Fiore's notes): Let X and Y be sets and X_{\perp} and Y_{\perp} be the corresponding flat domains. Show that a function $f: X_{\perp} \to Y_{\perp}$ is continuous if and only if one of (a) or (b) holds:
 - (a) f is strict, i.e. $f(\bot) = \bot$.
 - (b) f is constant, i.e. $\forall x \in X(f(x) = f(\bot))$.
- 5. For the disjoint union of two domains (also called the binary sum of domains), there are two choices: the coalesced sum (or smashed sum) $D +_c E$, or the separated sum $D +_s E$.

For the coalesced sum, the set $D +_{c} E$ is defined as

$$\{\bot\} \cup \{(0,d) \mid d \in D, d \neq \bot_D\} \cup \{(1,e) \mid e \in E, e \neq \bot_E\}$$

For the separated sum, the set $D +_s E$ is defined as

$$\{\bot\} \cup \{(0,d) \mid d \in D\} \cup \{(1,e) \mid e \in E\}$$

So, the separated sum introduces a new \bot element, whereas the coalesced sum "coalesces (or smashes) them together".

(NB. The 0 and 1 in the pairs have no special significance, apart from being able to distinguish the "elements coming from D" from the "elements coming from E"; we want to define the disjoint union, which should also work, for example, for $\mathbb{N}_{\perp} + \mathbb{N}_{\perp}$.)

Let two domains (D, \sqsubseteq_D) and (E, \sqsubseteq_E) be given.

- (a) Define the partial ordering \sqsubseteq on $D +_s E$ and give the \bot -element.
- (b) Define the partial ordering \sqsubseteq on $D +_c E$ and give the \bot -element.
- (c) For $(f_i)_{i\in\mathbb{N}}$ a chain in $D+_s E$ define $\sqcup_{i\in\mathbb{N}} f_i$ and prove that it is the least upperbound.
- (d) For $(f_i)_{i\in\mathbb{N}}$ a chain in $D+_c E$ define $\sqcup_{i\in\mathbb{N}} f_i$ and prove that it is the least upperbound.
- (e) Define injections inl : $D \to D +_s E$ and inr : $E \to D +_s E$ that are continuous. (You don't have to prove that they are continuous.)
- (f) Define injections in $E \to D +_c E$ and in $E \to D +_c E$ that are continuous. (You don't have to prove that they are continuous.)
- (g) (*) For F a domain and $f:D\to F,\ g:E\to F$ we want to define a continuous function $[f,g]:D+E\to F$ such that

$$\begin{split} [f,g](\mathsf{inl}(x)) &=& f(x), \\ [f,g](\mathsf{inr}(x)) &=& g(x). \end{split}$$

Show how to define [f, g] for the case of $D +_c E$ and for the case of $D +_s E$. For one of these cases, we can only define [f, g] if we place additional requirements on f and g. Which?

6. (*) [If you are familiar with Topology, this is to show that "topological continuity" is the same as "Scott continuity", the notion of continuity that we use in Domain Theory]

For (D, \sqsubseteq) a domain, we say that $X \subseteq D$ is open in case we have

- (i) $\forall x, x' \in D(x \in X \land x \sqsubseteq x' \Rightarrow x' \in X)$ "X is an upperset".
- (ii) for all chains $(d_i)_{i\geq 0}, \sqcup_{i\geq 0} d_i \in X \Rightarrow \exists i (d_i \in X)$ "X is inaccessible by chains".

For D and E domains, we say that $f: D \to E$ is topologically continuous if

$$\forall Y \subseteq E(Y \text{ is open } \Rightarrow f^{-1}(Y) \text{ is open}),$$

where $f^{-1}(Y) := \{x \in X \mid f(x) \in Y\}.$

- (a) Prove that the set $\{x \in D \mid x \not\sqsubseteq d\}$ is open (for al $d \in D$).
- (b) Prove that f is Scott-continuous implies f is topologically continuous.
- (c) Prove that f is topologically continuous implies f is Scott-continuous. Hint: use contraposition.