Mathematics and computers; a revolution!

Herman Geuvers (thanks to Freek Wiedijk)

Radboud University Nijmegen
(Eindhoven University of Technology)

March 7 2017
Lustrum Symposium GEWIS
overview

some mathematical history

formalized mathematics

reliability of proof assistants

a large mathematical proof: Kepler conjecture

formal proofs in computer science
some mathematical history

issues in the foundations of mathematics (beginning 20th cent.)

Cantor had developed set theory as a general language/system to do all mathematics in.

Various questions came up:

- What is mathematical truth?
- When is a mathematical argument/proof correct?
- What is existence?
- Do abstract mathematical objects exist in reality?
- Can something exist when we cannot construct it?
- Can we just define anything we want?
- Is mathematics consistent?
- Is mathematics decidable?
Example of a non-constructive existence proof

Theorem There exist irrational x and y with x^y rational

<table>
<thead>
<tr>
<th>Condition</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rational</td>
<td>$x \in \mathbb{Q}$</td>
</tr>
<tr>
<td>Irrational</td>
<td>$x \in \mathbb{R} \setminus \mathbb{Q}$</td>
</tr>
</tbody>
</table>

Proof

$$
\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{(\sqrt{2} \cdot \sqrt{2})} = \sqrt{2}^2 = 2
$$

In case $\sqrt{2}^{\sqrt{2}}$ rational, take $x = y = \sqrt{2}$

In case $\sqrt{2}^{\sqrt{2}}$ irrational, take $x = \sqrt{2}^{\sqrt{2}}$ and $y = \sqrt{2}$

QED

Constructively, this is not a proof without proving whether $\sqrt{2}^{\sqrt{2}}$ is rational

(but: $\sqrt{2}^{\sqrt{2}}$ is irrational)
the invention of formal logic

Aristoteles
fourth century before Chr.

Gottlob Frege
nineteenth century

Begriffsschrift
1879

\[A - n < b \]
\[\frac{\gamma}{\beta} (0_r + \Gamma = d_\beta) \]
\[d < B \]
\[n > 0 \]
\[A \geq b \]
\[\frac{\gamma}{\beta} (0 + \Gamma = d_\beta) \]
\[d < B \]
logic adrift in paradoxes: Russell’s paradox

\{ x \mid x \notin x \} \in \{ x \mid x \notin x \} ?

holds by definition exactly in the case that

\{ x \mid x \notin x \} \notin \{ x \mid x \notin x \}

is true if and only if (desda) it is false!

Frege’s logic from the Begriffsschrift is inconsistent

read: Apostolos Doxiadis & Christos Papadimitriou, Logicomix
logic adrift in paradoxes: the hypergame paradox

hypergame:

choose a finite game

- chess
- checkers
- go

... hypergame? ...
three schools

David Hilbert
formalism
‘game with symbols’

Bertrand Russell
logicism
‘boils down to logic’

L.E.J. Brouwer
intuitionism
‘constructions in the mind’

constructive mathematics
Principia Mathematica

reconstruction of mathematics
coded in formal logic

three volumes
1910, 1912, 1913

fragment of page 379:

\[\text{\textit{54.43}. } \vdash \alpha, \beta \epsilon 1 \vdash \psi \alpha \land \beta = \Lambda \equiv \alpha \lor \beta \epsilon 2 \]

\text{Dem.}

\[\vdash \text{\textit{54.26}. } \psi \vdash \alpha = \iota x \land \beta = \iota y \psi \alpha \lor \beta \epsilon 2 \equiv \alpha \equiv y \]

[\textit{51.231}]

[\textit{13.12}]

\[\vdash \text{\textit{11.11.35}. } \psi \]

\[\vdash (\iota x, y). \alpha = \iota x \land \beta = \iota y \psi \alpha \lor \beta \epsilon 2 \equiv \alpha \land \beta = \Lambda \]

(1)

\[\vdash \text{\textit{11.54}. } \text{\textit{52.1}. } \psi \vdash \text{Prop} \]

(2)
mathematics and computers

Curry-Howard isomorphism

proofs correspond with computer programs

constructive mathematics functional programming language

- a proof is an object (term) of a well-defined formal language
- when you prove constructively that something exists, you have a computer program to compute it.
formalized mathematics

N.G. de Bruijn

Nicolaas Govert (‘Dick’) de Bruijn
Den Haag 1918 – Nuenen 2012

professor in mathematics at the
Eindhoven University of Technology

- modular forms
- BEST-theorem
 (de Bruijn, van Aardenne-Ehrenfest, Smith, Tutte)
 formula for the number of Euler-cycles in a graph
- asymptotic analysis
Penrose-tilings and quasicrystals
AUTOMATH

N.G. de Bruijn:

1967: mathematical language AUTOMATH

use the computer to encode mathematics fully formally
encoding a complete mathematics book

Grundlagen der Analysis
mathematics book of 158 pages
complete precise definition of \(\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C} \)
plus all operations on these sets

Checking Landau’s ‘Grundlagen’
in the AUTOMATH system
PhD. Thesis
complete formal version
approximately 10,000 lines AUTOMATH
Automath approach to formalising mathematics

- sets are types and formulas are types

 a formula is represented as the type of its proofs

- \(t : A \) (term \(t \) is of type \(A \)) can be read as

 - \(t \) is an object in the set \(A \) (if \(A \) represents as set)
 - \(t \) is a proof of formula \(A \) (if \(A \) represents as formula)

- proof-checking is type-checking:

 to verify whether \(t \) is a correct proof, we type-check it.

- proof-checking is decidable, proof-finding is not
Coq

type theory

modern version of AUTOMATH and formalized mathematics

Gérard Huet
Thierry Coquand
Christine Paulin

\[pCIC = \text{predicative Calculus of Inductive Constructions} \]

the Coq proof assistant
INRIA, France
system used most at Nijmegen
the four color theorem

- Francis Guthry, 1852 question
- Percy Heawood, 1890 proof of the **five color theorem**
- Kenneth Appel & Wolfgang Haken, 1975 proof of the **four color theorem**

computer computes gigantic set of possible colorings of a whole catalogue of graphs
complicated computer program
very long computation

computer does *not* check the proof!

- Neil Robertson, Daniel Sanders, Paul Seymour, Robin Thomas, 1997 **polished version** of the proof and the program
Coq version of the four color theorem

- formal version of the proof
- program correctness
 Coq as functional programming language

new technologies:

- mathematical language Ssreflect
- Feit-Thompson theorem
- hypermaps
Lemma no_minSimple_odd_group (gT : minSimpleOddGroupType) : False.
Proof.
 have [/forall_inP | [S [T [_ W W1 W2 defW pairST]]]] := FTtypeP_pair_cases gT.
 exact/negP/not_all_FTtype1.
 have xdefW: W2 \x W1 = W by rewrite dprodC.
 have pairTS := typeP_pair_sym xdefW pairST.
 pose p := #|W2|; pose q := #|W1|.
 have p’q: q != p.
 have [[[ctiW _ _] _ _ _] /mulG_sub[sW1W sW2W]] := (pairST, dprodW defW).
 have [cycW _ _] := ctiW; apply: contraTneq (cycW) => eq_pq.
 rewrite (cyclic_dprod defW) ?(cyclicS _ cycW) // -/q eq_pq.
 by rewrite /coprime gcdnn -trivg_card1; have [] := cycTI_nontrivial ctiW.
 without loss{p’q} ltqp: S T W1 W2 defW xdefW pairST pairTS @p @q / q < p.
 move=> IH_ST; rewrite neq_ltn in p’q.
 by case/orP: p’q; [apply: (IH_ST S T) | apply: (IH_ST T S)].
 have [[_ maxS maxT] _ _ _] := pairST.
 have [[U StypeP] [V TtypeP]] := (typeP_pairW pairST, typeP_pairW pairTS).
 have Stype2: FTtype S == 2 := FTtypeP_max_typeII maxS StypeP ltqp.
 have Ttype2: FTtype T == 2 := FTtypeP_min_typeII maxS maxT TtypeP TtypeP ltqp.
 have /mmax_exists[L maxNU_L]: 'N(U) \proper setT.
 have [[_ ntU _ _] cUU _ _ _] := compl_of_typeII maxS StypeP Stype2.
 by rewrite mFT_norm_proper // mFT_sol_proper abelian_sol.
 have /mmax_exists[M maxNV_M]: 'N(V) \proper setT.
 have [[_ ntV _ _] cVV _ _ _] := compl_of_typeII maxT TtypeP Ttype2.
 by rewrite mFT_norm_proper // mFT_sol_proper abelian_sol.
 have [[maxL sNU_L] [maxM sNV_M]] := (setIdP maxNU_L, setIdP maxNV_M).
 have [frobL sUH _] := FTypeII_support_facts maxS StypeP Stype2 pairST maxNU_L.
 have [frobM _ _] := FTypeII_support_facts maxT TtypeP Ttype2 pairTS maxNV_M.

etcetera
HOL Light

LCF tradition (Milner):
LCF → HOL → HOL Light
Stanford, US → Cambridge, UK → Portland, US
Based on: higher order logic

John Harrison
proves correctness of floating point hardware at Intel
formalises mathematics in his spare time

very simple and elegant system
easy to extend (add your own tactics)
not user friendly
example of a formal HOL Light proof

\[\vec{w} \neq \vec{0} \land \vec{u} \cdot \vec{w} = \vec{v} \cdot \vec{w} \Rightarrow \angle (\vec{u} \times \vec{w}, \vec{u} \times \vec{w}) = \angle (\vec{u}, \vec{v}) \]

let VECTOR_ANGLE_DOUBLECROSS = prove
('!u v w.
 ~(w = vec 0) \land u \cdot w = 0 \land v \cdot w = 0
 ==> vector_angle (u \times w) (v \times w) = vector_angle u v',
REPEAT GEN_TAC THEN ASM_CASES_TAC 'u:real^3 = vec 0' THENL
 [ASM_REWRITE_TAC[vector_angle; CROSS_0]; ALL_TAC] THEN
ASM_CASES_TAC 'v:real^3 = vec 0' THENL
 [ASM_REWRITE_TAC[vector_angle; CROSS_0]; ALL_TAC] THEN
STRIP_TAC THEN
SUBGOAL_THEN ~(u \times w = vec 0) \land ~(v \times w = vec 0)' ASSUME_TAC THENL
 [REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[GSYM DOT_EQ_0] THEN VEC3_TAC;
 ALL_TAC] THEN
ASM_SIMP_TAC[VECTOR_ANGLE_EQ] THEN
SIMP_TAC[vector_norm; GSYM SQRT_MUL; DOT_POS_LE] THEN
ASM_REWRITE_TAC[DOT_CROSS; REAL_MUL_LZERO; REAL_SUB_RZERO] THEN
REWRITE_TAC[REAL_ARITH '(x * y) * (z * y):real = (y * y) * x * z'] THEN
SIMP_TAC[SQRT_MUL; DOT_POS_LE; REAL_LE_SQUARE; REAL_LE_MUL] THEN
SIMP_TAC[SQRT_POW_2; DOT_POS_LE; GSYM REAL_POW_2] THEN REAL_ARITH_TAC);;
reliability of proof assistants

why would we believe a proof assistant?

...a proof assistant is just another program...

to attain the utmost level of reliability:

- precise description of the rules and the logic of the system.
- have a small “kernel”: all proofs can be reduced to a small number of basic proof steps
 high level steps are defined in terms of the small basic ones.

LCF approach [Milner]:

- have an abstract data type of theorems \(\text{thm} \)
- only constants of type \(\text{thm} \) are the axioms
- only functions to \(\text{thm} \) are logical inference rules

Robin Milner
why would we believe a proof assistant?

... a proof assistant is just another program ...

other possibility to increase the reliability of the proof assistant:

De Bruijn criterion

a proof assistant satisfies the De Bruijn criterion if

- it generates proof objects
- that can be checked independently of the system that created them
- using a simple program that a skeptical user can write him/herself
why would we believe a proof assistant?

De Bruijn criterion: separate the proof checker ("simple") from the proof engine ("powerful")

proof assistant (interactive theorem prover)

proof assistant with a small kernel that satisfies the De Bruijn criterion
Kepler conjecture

face-centric cubic ball packing

strena seu de nive sexangula
on the six-angled snowflake
Kepler conjecture

the most compact way of stacking balls of the same size is a pyramid.

Volume occupied by spheres = \frac{\pi}{\sqrt{18}} \approx 74\%
the Flyspeck project

- 1996: proof of the Kepler conjecture
 book of 334 pages
 giga bytes of data and
days of computer calculations

- reviewers of the *Mathematische Annalen*:
 we cannot find mistakes, but
 too complicated to verify in full detail
 (reviewers did not study the programs)

- 2003: start the Flyspeck project =
 create a completely formal version of the proof
 HOL Light proof assistant
 (+ Isabelle proof assistant)

- 2014: formal proof of the Kepler conjecture completed
 impossible that there is still a mistake somewhere
the proof of Hales rests on a number of computer calculations:

a. *a program that lists all 19,715 “tame graphs”, that potentially may produce a counterexample to the Kepler conjecture.*

 this program was originally written in Java
 now, it is written and verified in Isabelle and exported to ML

b. *a computer calculation that verifies that a list of 43,078 linear programs are unsolvable.*

 each linear program in this list has about 100 variables and a similar list of equations.

c. *a computer verification that 23,242 non-linear equations with at most 6 variables hold.*

 this is the verification where originally interval-arithmetic was used.
Hales’ proof of the Kepler conjecture

the 23,242 non-linear equations with at most 6 variables typically look like this, with the variables ranging over specific intervals

\[
\frac{-x_1 x_3 - x_2 x_4 + x_1 x_5 + x_3 x_6 - x_5 x_6 + x_2 (-x_2 + x_1 + x_3 - x_4 + x_5 + x_6)}{\sqrt{4x_2 \left(x_2 x_4 (-x_2 + x_1 + x_3 - x_4 + x_5 + x_6) + x_1 x_5 (x_2 - x_1 + x_3 + x_4 - x_5 + x_6) + x_3 x_6 (x_2 + x_1 - x_3 + x_4 + x_5 - x_6) - x_1 x_3 x_4 - x_2 x_3 x_5 - x_2 x_1 x_6 - x_4 x_5 x_6 \right)}} < \tan\left(\frac{\pi}{2} - 0.74\right)
\]

use computer programs to verify these inequalities.
formal proofs in computer science

Proving programs correct

John McCarthy (1927 – 2011)
1961, Computer Programs for Checking Mathematical Proofs

Proof-checking by computer may be as important as proof generation. It is part of the definition of formal system that proofs be machine checkable.

... For example, instead of trying out computer programs on test cases until they are debugged, one should prove that they have the desired properties.
we have techniques to prove high level programs correct (Dijkstra, Hoare)

That a program satisfies a specification is a formal mathematical statement that we can prove using a proof assistant.

First formalize the programming and specification language and their semantics.

Similar techniques can be applied to hardware design.
proof assistants for software verification

Holy Grail

‘Things like even software verification, this has been the Holy Grail of computer science for many decades but now in some very key areas, for example, driver verification we’re building tools that can do actual proof about the software and how it works in order to guarantee the reliability.’

Bill Gates, 18 April 2002
Compcert

- verifying an optimizing compiler from C to x86/ARM/PowerPC code
- implemented using Coq’s functional language
- verified using using Coq’s proof language

why?

- your high level program may be correct, maybe you’ve proved it correct ...
- ... but what if it is compiled to wrong code?
- compilers do a lot of optimizations: switch instructions, remove dead code, re-arrange loops, ...
- for critical software the possibility of miscompilation is an issue
C-compilers are generally not correct

Csmith project *Finding and Understanding Bugs in C Compilers*, X. Yang, Y. Chen, E. Eide, J. Regehr, University of Utah.

... we have found and reported more than 325 bugs in mainstream C compilers including GCC, LLVM, and commercial tools. Every compiler that we have tested, including several that are routinely used to compile safety-critical embedded systems, has been crashed and also shown to silently miscompile valid inputs.

As of early 2011, the under-development version of CompCert is the only compiler we have tested for which Csmith cannot find wrong-code errors. This is not for lack of trying: we have devoted about six CPU-years to the task.
some other large formalization projects in Computer Science

- formalization of the C standard in Coq
 Robbert Krebbers and Wiedijk Nijmegen 2015.

- the ARM microprocessor
 proved correct in HOL4
 Anthony Fox University of Cambridge, 2002

- the L4 operating system,
 proved correct in Isabelle
 Gerwin Klein NICTA, Australia, 2009
 200,000 lines of Isabelle
 20 person-years for the correctness proof
 160 bugs before verification
 0 bugs after verification

- Conference Interactive Theorem Proving, every paper is
 supported by a formalization

Gerwin Klein

Robbert Krebbers
proof assistants: what needs to be done

create large comprehensive reusable formal libraries
 ▶ formalize all of the bachelor undergraduate mathematics

automation
 ▶ combination of automated theorem proving and machine learning
 use machine learning to produce a hint database that can be fed to an automated theorem prover: the Hammer approach
 ▶ domain specific tactics and domain specific automation
proof assistants for formal verification is becoming standard technology in computer science

in mathematics there are more and more fields where the computer is indispensable for checking large proofs

NB. one can prove that

there will always be short formulas with large proofs

Nieuw Archief voor Wiskunde

Wiskunde en computer

165 Over digitaal wiskundig lesmateriaal
Aljsh Cohen

177 Een wiskundig bewijs correct bewezen
Freek Wiedijk, Herman Geuvers en Josef Urban

193 Flag algebras: a first glance
Marcel de Carli Silva, Fernando de Oliveira Filho en Cristianese Seto

200 Computational Conley theory
William Kallos en Robert Vandervorst