Dependently typed programming in Coq

Herman Geuvers

Institute for Computing and Information Sciences – Foundations
Radboud University Nijmegen

The Future of Programming
TU Delft
January 16, 2014
We are moving from e to i

From eGovernment
Also from eVisser
to iGovernment
to iVisser?
Integration of programming and proving

- Find the computational content of (abstract) mathematical theorems.
- Mathematical proofs become too hard to check by hand (Flyspeck project)
- Precise mathematical specifications of programs
- Prove the (partial) correctness of programs

Method: Powerful type system that can express

- programs
- specifications
- propositions
- proofs
Outline

- Types in functional languages
- Dependent types and the Propositions-as-Types Isomorphism
- The Coq system and inductive types
- Rich types for programming and proving
quicksort [] = []
quicksort (x:xs) = quicksort [y | y <- xs, y<x] ++ [x] ++ quicksort [y | y <- xs, y>=x]

quicksort : list nat -> list nat

But we can get more out of types

quicksort : list a -> list a??

quicksort now has a polymorphic type ...?

But that is not correct, because the type a must have an ordering defined on it.
In Haskell, this can be solved by using type class overloading:

```haskell
class Ord a where
  (<), (>=) : a -> a -> Bool
  x >= y = not (y < x)

Then

  quicksort : (Ord a) ⇒ list a → list a
```

Note: this requires type \(a \) to have two binary boolean functions \(<\) and \(\geq\) defined on it; these need not be orderings.
quicksort should give a sorted list:

\[\text{Sorted}(l) := \forall i < |l| (l_i \leq l_{i+1}) \]

Also the output list should be a permutation of the input list. We define

\[\text{Perm}(l, k) := |l| = |k| \land \forall i \leq |l| (\text{occ}(l_i, k) = \text{occ}(l_i, l)) \]

where \(\text{occ}(n, l) \) is the number of occurrences of \(n \) in \(l \).

\[\forall l : \text{list} \text{ nat}, (\text{Sorted}(\text{quicksort}(l)) \land \text{Perm}(l, \text{quicksort}(l))) \]

Gives a complete specification of “sorting”.
Propositions-as-Types

- A constructive proof of a formula is itself a program
- Propositions are Types
- Proofs are Terms
- PAT, or in a modern setting iPAT (interpretation of P-as-T)

\[M : A \]

Has two readings:
- \(A \) is a type, and \(M \) is a program (data) of type \(A \).
- \(A \) is a proposition, and \(M \) is a proof of \(A \).
A proof of

\[\forall l : \text{list nat}, \exists k : \text{list nat}, (\text{Sorted}(k) \land \text{Perm}(l, k)) \]

consists of

- a construction of a list \(k \) out of a list \(l \)
- a proof of \(\text{Sorted}(k) \)
- a proof of \(\text{Perm}(l, k) \)
Program extraction: A sorting algorithm out of a proof

Given a proof

\[P : \forall l : \text{list nat}, \exists k : \text{list nat}, (\text{Sorted}(k) \land \text{Perm}(l, k)) \]

One can extract from \(P \)

- \(F : \text{list nat} \rightarrow \text{list nat}; \)
- a proof of

\[\forall l : \text{list nat}, (\text{Sorted}(F(l)) \land \text{Perm}(l, F(l))) \]
From a proof

\[P : \forall x : A, \exists y : B, R(x, y) \]

one can extract

- \(F : A \rightarrow B \)
- a proof of

\[\forall x : A, R(x, F(x)) \]

The dependent type system implemented in Coq supports this: Coq is an integrated system for proving and programming.
Dependent type theory and propositions-as-types

<table>
<thead>
<tr>
<th>Data types</th>
<th>Propositions</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-dependent</td>
<td>non-dependent</td>
</tr>
<tr>
<td>$A \rightarrow B$</td>
<td>$A \rightarrow B$</td>
</tr>
<tr>
<td>$A \times B$</td>
<td>$A \wedge B$</td>
</tr>
<tr>
<td>dependent</td>
<td>dependent</td>
</tr>
<tr>
<td>$\prod x : A. B(x)$</td>
<td>$\forall x : A. B(x)$</td>
</tr>
<tr>
<td>$\sum x : A. B(x)$</td>
<td>$\exists x : A. B(x)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data types</th>
<th>Propositions</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-dependent</td>
<td>non-dependent</td>
</tr>
<tr>
<td>$a : A \quad b : B$</td>
<td>$a : A \quad b : B(a)$</td>
</tr>
<tr>
<td>$\langle a, b \rangle : A \times B$</td>
<td>$\langle a, b \rangle : \sum x : A. B(x)$</td>
</tr>
<tr>
<td>$x : A \vdash b : B$</td>
<td>$x : A \vdash b : B(x)$</td>
</tr>
<tr>
<td>$\lambda x : A. b : A \rightarrow B$</td>
<td>$\lambda x : A. b : \prod x : A. B(x)$</td>
</tr>
</tbody>
</table>
Coq treats data types and propositions in exactly the same way, but they are not identified. (E.g. in Agda they are.)

Data types and Logical propositions live in different type universes

- Data types: \(A : \text{Set} \) or \(A : \text{Type} \)
- Logical propositions: \(A : \text{Prop} \)

Advantage: the system can extract a (correct) program from a proof by “removing everything related to Prop”.

\[
P : \Pi \ell : \text{list nat}, \Sigma k : \text{list nat}, (\text{Sorted}(k) \land \text{Perm}(l, k)) : \text{Set} \quad \text{Set} \quad \text{Prop}
\]
Types in functional languages
Dependent types and the Propositions-as-Types Isomorphism
The Coq system and inductive types
Rich types for programming and proving

Radboud University Nijmegen

The Coq system: program extraction

\[P : \prod l : \text{list nat}, \sum k : \text{list nat} \cdot (\text{Sorted}(k) \land \text{Perm}(l, k)) \]

The extraction \(E \) gives

\[E(P) : \text{list nat} \rightarrow \text{list nat} \]

Extraction can be done to

- Coq itself
- Haskell
- OCaml
What if I have a program that I want to prove correct?
Given

- $F : A \rightarrow B$
- $R : A \rightarrow B \rightarrow \text{Prop}$

I want to prove

$$\forall x : A, R(x, F(x))$$

This can be done (Program tactic by M. Sozeau):

- “Claim” $F : \prod x : A, \sum y : B, R(x, F(x))$.
- Coq will interpret F as a proof-term with holes
- These holes are returned as proof obligations, that have to be dealt with by the user.
Inductive types in Coq

\textbf{Inductive} \texttt{nat} : \texttt{Set} :=
\begin{itemize}
\item \texttt{0} : \texttt{nat}
\item \texttt{S} : \texttt{nat} \to \texttt{nat}
\end{itemize}

This yields
\begin{itemize}
\item a type \texttt{nat} and terms \texttt{0 : nat} and \texttt{S : nat \to nat}
\item a function definition principle (structural recursion)
\item a proof principle (induction)
\end{itemize}

\textbf{Fixpoint} \texttt{plus} (\texttt{n m : nat}) \{\texttt{struct n}\} : \texttt{nat} :=
\begin{itemize}
\item \texttt{match \texttt{n} with}
\item \texttt{0} \\Rightarrow \texttt{m}
\item \texttt{S \texttt{p}} \Rightarrow \texttt{S (plus \texttt{p m})}
\item \texttt{end.}
\end{itemize}
Inductive types in Coq

```
Inductive nat : Set :=
| 0 : nat
| S : nat -> nat
```

This yields

- a type `nat` and terms `0 : nat` and `S : nat -> nat`
- a function definition principle (structural recursion)
- a proof principle (induction)

```
nat_ind
: forall P : nat -> Prop,
  P 0 -> (forall n : nat, P n -> P (S n))
  -> forall n : nat, P n
```
Other Inductive types in Coq

Inductive list (A : Type) : Type :=
 | nil : list A
 | cons : A -> list A -> list A.

Also relations are defined inductively:

Inductive le (n : nat) : nat -> Prop :=
 | le_n : n <= n
 | le_S : forall m : nat, n <= m -> n <= S m
Structure OrderedType:= {
 car :> Type;
 ord : car -> car -> Prop;
 ord_refl : forall x, ord x x;
 ord_symm : forall x y, ord x y -> ord y x;
 ord_trans : forall x y z, ord x y -> ord y z -> ord x z}.

A term of type OrderedType is a tuple ⟨A, R, p₁, P₂, p₃⟩ with

- A : Type
- R : A → A → Prop
- p₁ proves that R is reflexive
- p₂ proves that R is symmetric
- p₃ proves that R is transitive

The labels allow to project to the appropriate field.
We can now program

\[
\text{sort} : \forall A : \text{OrderedType}, \text{list } A \rightarrow \text{list } A
\]

Or it can be extracted from a proof of

\[
\forall A : \text{OrderedType}, \forall l : \text{list } A, \exists k : \text{list } A, (\text{Sorted}(k) \land \text{Perm}(l, k))
\]

So: we can build very precise abstract interfaces for data structures and program with them.
Using the rich types to guide your program

A type of vectors (list of a given length):

\[
\text{Inductive vec (A:Type): nat ->Type := } \\
\quad \text{vnil : vec A 0} \\
\quad \mid \text{vcons : forall n : nat, A -> vec A n -> vec A (S n).}
\]

So \text{vec A n} denotes the lists over \(A\) of length \(n\).

Defining the head of a list is annoying, because nil has no head ...

For the vector type we want

\[
\text{hd : forall (A : Type) (n : nat), vec A (S n) -> A}
\]

Definition \(\text{hd (A:Type)(n:nat)(v:vec A (S n)) : A :=}
\]

\[
\begin{align*}
\text{match v with} \\
\quad \text{vcons n a v => a}
\end{align*}
\]

\text{Dependently typed pattern matching: there is no “nil case”!}
More interesting way of using the rich type system

A type of (untyped) \(\lambda \)-terms

\[
\text{Inductive term : Type := }
\begin{align*}
\mid \text{Var : nat -> term} \\
\mid \text{Lam : nat -> term -> term} \\
\mid \text{App : term -> term -> term.}
\end{align*}
\]

Simple typed terms: term of a type in a context \((\Gamma \vdash M : A)\)

\[
\text{Inductive type := }
\begin{align*}
\mid \text{iota : type} \\
\mid \text{arr : type -> type -> type.}
\end{align*}
\]

Definition context := list type.

In order to define \(\text{Term } \Gamma A\) as the type of terms of type \(A\) in context \(\Gamma\).
More interesting way of using the rich type system

Inductive Term : context -> type -> Type :=
| var : forall c t i,
 lookup c i = Some t -> Term c t
| app : forall c t s,
 Term c (arr t s) -> Term c t -> Term c s
| abs : forall c t s,
 Term (t :: c) s -> Term c (arr t s).

Now we can prove, e.g.

Lemma weaken : forall (c: context)(t s:type),
 Term c t -> Term (s :: c) t.
In CoRN (Coq Repository at Nijmegen) we have developed a lot of results for real numbers. Goal:

- Develop abstract mathematical results
- Program with concrete mathematical data in a reliable way
- Especially: Exact Real Arithmetic

Example: Fundamental Theorem of Algebra

- Every polynomial over the complex numbers has a root.
- Result in (abstract) mathematics that has computational content.
- For given coefficients, a root should be computed at arbitrary precision.
Real Numbers in Coq

- Axiomatic: a ‘Real Number Structure’ is a Cauchy-complete Archimedean ordered field.
- Prove FTA ‘for all real numbers structures’.
- Construct a model to show that real number structures exist. (Cauchy sequences over an Archimedean ordered field, say the rational numbers)
- Prove that any two real number structures are isomorphic.
- Construct computationally “better” models that allow infinitary approximation of real numbers (exact real arithmetic).
Axioms for Real Numbers

The reciprocal operation is essentially partial

\[\frac{1}{x} : \Pi \ x : F. x \neq 0 \rightarrow F \]

So, for \(x : F \), \(\frac{1}{x} \) is actually \(\frac{1}{x, H} \) with \(H : x \neq 0 \).

The term \(\frac{1}{x, H} \) depends on \(H : x \neq 0 \) and we have to show that this is not a real dependency:

\[\frac{1}{x, H} = \frac{1}{x, H'} \]

for all \(H, H' : x \neq 0 \).
Further Reading on (dependent typed programming in) Coq

- Coq in a hurry (Yves Bertot)
- Coq’Art book (Yves Bertot & Pierre Castéran)
- Certified programming with dependent types, book on-line (Adam Chlipala).
- Software Foundations course (Benjamin Pierce et al.)
- For the Agda angle: ask Wouter Swierstra (UU)
- For formalization of real programming language (C) features in Coq: ask Robbert Krebbers or Freek Wiedijk (RU)