
Computer Assisted Mathematical Proofs:
Improving Automation using Machine Learning

Herman Geuvers1

Radboud University Nijmegen
The Netherlands

November 18, 2016
Chinese Academy of Science, Beijing

1Thanks to Freek Wiedijk, Josef Urban, Cezary Kaliszyk

Can the computer really help us to prove theorems?

Yes it can,
and we will rely more and more on computers for
correct proofs

But it’s hard ...

I How does it work?

I Some state of the art

I What needs to be done: proof automation

Overview

I What are Proof Assistants?

I How can a computer program guarantee correctness?

I Challenges

What are Proof Assistants – History

John McCarthy (1927 – 2011)
1961, Computer Programs for Checking Mathematical Proofs

Proof-checking by computer may be as important as
proof generation. It is part of the definition of formal
system that proofs be machine checkable.
. . .
For example, instead of trying out computer programs on
test cases until they are debugged, one should prove that
they have the desired properties.

What are Proof Assistants – History

Around 1970 five new systems / projects / ideas

I Automath De Bruijn (Eindhoven) now: Coq

I Nqthm Boyer, Moore (Austin, Texas) now: ACL2, PVS

I LCF Milner (Stanford; Edinburgh) now: HOL, Isabelle

I Mizar Trybulec (Bia lystok, Poland)

I Evidence Algorithm Glushkov (Kiev, Oekrain)

HOL Light

LCF tradition (Milner):
LCF → HOL → HOL Light
Stanford, US → Cambridge, UK → Portland, US
Based on: higher order logic

John Harrison
proves correctness of floating point hardware at Intel
formalises mathematics in his spare time

very simple and elegant system
easy to extend (add your own tactics)
not user friendly

Isabelle

’successor’ of HOL
Based on: higher order logic

cooperation between two universities:
Cambridge, UK
focus: computer security
München, Germany
focus: mathematics and programming languages

balanced system
nice proof language
quite powerful automation

Coq

Based on: type theory

INRIA en Microsoft
Institut National de Recherche en Informatique et en Automatique

system with the most impressive formalisation so far
system used most at Nijmegen

integrated programming language
≈ Haskell

mathematically expressive
the built in logic is intüıtionistic

Mizar

Andrzej Trybulec
Bia lystok, Poland

also: Nagano, Japan
Based on: set theory

most mathematical of all proof assistants

largest library of formalised mathematics
2,1 miljon lines of code

user friendly
sometimes hard to follow

What Proof Assistants are not

Doing mathematics on a computer

• Computing: numbers
numerical mathematics, visualisation, simulation

• Computing: formulas
computer algebra

• Proving: by the computer
automatic theorem proving

• Proving: by a human, with the aid of a computer
proof assistant

Why Proof Assistants

Doing mathematics on a computer

• Numerical Mathematics and Computer Algebra: No
proofs

• Automated Theorem Provers: No interesting mathematics

• Proof Assistants: proofs and interesting mathematics

the price to pay:
user has to do a lot

proof assistant = interactive theorem prover
interplay between human and computer

Proof Assistants: what are they used for

I Verify mathematical theorems
Some mathematical proofs just become too large and
complex: proof of the Kepler conjecture

I Build up a formal mathematical library
Mizar Mathematical Library

I Verify software and hardware design
Safety critical systems are too complex and vital
Compcert: verified C compiler

Proof Assistants for software verification

Holy Grail

‘Things like even software verification, this has been the
Holy Grail of computer science for many decades but now
in some very key areas, for example, driver verification
we’re building tools that can do actual proof about the
software and how it works in order to guarantee the
reliability.’

Bill Gates, 18 april 2002

Different styles of formalised proofs

I procedural
tell what to do
Go out of the train, to the right, down the stairs, to the right,
out of the exit, to the right, cross the pedestrian crossing,
take the metro line 10, . . .

I declarative
tell where to go
Go to the platform, go to the north exit of the station, go to
the mero, then go to Peking University, . . .

Different styles of formalised proofs

procedural (tactics)

Theorem double div2 : forall (n:nat), div2 (double n) = n.

simple induction n; auto with arith.

intros n0 H.

rewrite double_S; pattern n0 at 2; rewrite <- H; simpl; auto.

Qed.

Different styles of formalised proofs

declarative

Theorem double div2 : forall (n:nat), div2 (double n) = n.

proof.

assume n:nat.

per induction on n.

suppose it is 0.

thus thesis.

suppose it is (S m) and IH:thesis for m.

have (div2 (double (S m))= div2 (S (S (double m)))).

~= (S (div2 (double m))).

thus ~= (S m) by IH.

end induction.

end proof.

Why would we believe a proof assistant?

. . . a proof assistant is just another program . . .

To attain the utmost level of reliability:

I Description of the rules and the logic of the system.

I A small “kernel”. All proofs can be reduced to a small
number of basic proof steps. high level steps are defined in
terms of the small ones.

LCF approach [Milner]:
Have an abstract data type of theorems thm, where the only
constants of this data type are the axioms and the only functions
to this data type are the inference rules of the logic.

Why would we believe a proof assistant?

. . . a proof assistant is just another program . . .

Other possibilities to increase the reliability of the proof assistant

I Check the proof checker. Verify the correctness of the proof
assistant in a proof assistant (e.g. the system itself).
Example Coq in Coq: Construct a model of Coq in Coq itself
and show that all tactics are sound with respect to this model
NB. Gödel’s incompleteness . . . , so we need to assume
something.

I The De Bruijn criterion
A proof assistant satisfies the D.B. criterion if it generates
proof objects that can be checked independently of the system
that created it using a simple program that a skeptical user
can write him/herself.

Why would we believe a proof assistant?

Separating the proof checker (“simple”) from the proof engine
(“powerful”)

Proof Assistant (Interactive Theorem Prover)

Goals

Tactics

Proof assistantUser

Proof Assistant with a small kernel that satisfies the De Bruijn
criterion

Goals

OK

Proof checker

Proof object

Proof Engine

Tactics

User

Proof Assistant

Mathematical users of Proof Assistants

The 4 colour theorem

Kenneth Appel en Wolfgang Haken, 1976
Neil Robertson e.a., 1996
Coq: Georges Gonthier, 2004

Can every map be coloured with only 4 different colours?

• Gonthier has two pages of Coq definitions and notations that are
all that’s needed to fully and precisely understand his statement of
the 4 colour theorem.

Mathematical users of Proof Assistants

Flyspeck project: Formalizing a proof of the Kepler Conjecture

http://code.google.com/p/flyspeck/

Tom Hales, CMU Pittsburgh

Kepler Conjecture (1611)

The most compact way of stacking balls of the same size
is a pyramid.

Kepler Conjecture (1611)

I Hales 1998: proof of the conjecture using computer programs
(300 pages)

I Annals of Mathematics: 99% correct . . . but we can’t verify
the correctness of the computer programs.

Hales’ proof of the Kepler conjecture

Reduce the problem to the verification of inequalities of the shape

−x1x3 − x2x4 + x1x5 + x3x6 − x5x6+
x2(−x2 + x1 + x3 − x4 + x5 + x6)√√√√√√√4x2

x2x4(−x2 + x1 + x3 − x4 + x5 + x6)+
x1x5(x2 − x1 + x3 + x4 − x5 + x6)+
x3x6(x2 + x1 − x3 + x4 + x5 − x6)
−x1x3x4 − x2x3x5 − x2x1x6 − x4x5x6

< tan(

π

2
−0.74)

Use computer programs to verify these inequalities.

Flyspeck project

I Hales: formalise the proof of Kepler’s conjecture using Proof
Assistants Write the computer code in the PA, prove it correct
in the PA and run it in the PA.

I Proof Assistants used: HOL-light, Isabelle, (Coq)

Essential Computer Assistance in the Flyspeck formal proof

The proof of Hales rests on a number of computer calculations:

a. A program that lists all 19.715 “tame graphs”, that potentially
may produce a counterexample to the Kepler conjecture.
This program was originally written in Java. Now, it is written
and verified in Isabelle and exported to ML.

b. A computer calculation that verifies that a list of 43.078 linear
programs are unsolvable.
Each linear program in this list has about 100 variables and a
similar list of equations.

c. A computer verification that 23.242 non-linear equations with
at most 6 variables hold.
This is the verification where originally interval-arithmetic was
used.

Computer Science users of Proof Assistants

Compcert (Leroy et al. INRIA 2006)

I Verifying an optimizing compiler from C to
x86/ARM/PowerPC code

I implemented using Coq’s functional language

I verified using using Coq’s proof language

Why?

I Your high level program may be correct, maybe you’ve proved
it correct ...

I ... but what if it is compiled to wrong code?

I Compilers do a lot of optimizations: switch instructions,
remove dead code, re-arrange loops, ...

Compcert

C-compilers are generally not correct

Csmith project Finding and Understanding Bugs in C Compilers,
X. Yang, Y. Chen, E. Eide, J. Regehr, University of Utah.

... we have found and reported more than 325 bugs in
mainstream C compilers including GCC, LLVM, and
commercial tools.
Every compiler that we have tested, including several
that are routinely used to compile safety-critical
embedded systems, has been crashed and also shown to
silently miscompile valid inputs.

As of early 2011, the under-development version of
CompCert is the only compiler we have tested for which
Csmith cannot find wrong-code errors. This is not for
lack of trying: we have devoted about six CPU-years to
the task.

Some other large formalization projects in Computer Science

I Formalization of the C standard in Coq, by Krebbers and
Wiedijk, Nijmegen 2015.

I the ARM microprocessor, proved correct in HOL4 by Anthony
Fox University of Cambridge, 2002

I the L4 operating system, proved correct in Isabelle by Gerwin
Klein NICTA, Australia, 2009
200,000 lines of Isabelle
20 person-years for the correctness proof
160 bugs before verification
0 bugs after verification

I Conference Interactive Theorem Proving, every paper is
supported by a formalization

Proof Assistants: What needs to be done

Automation

I Formalize all of the Bachelor undergraduate mathematics

I Combination of Theorem Proving and Machine Learning
(Urban, Kaliszyk et al.)
Use ML to produce a hint databse that can be fed to an
Automated Theorem Prover: the Hammer approach

I Domain Specific Tactics and Automation

AI for Formal Mathematics

Inductive/Deductive AI over Formal Mathematics

I Alan Turing, 1950: Computing machinery and intelligence

I beginning of AI, Turing test

I last section of Turing’s paper: Learning Machines
I Which intellectual fields to use for building AI?

I But which are the best ones [fields] to start [learning on] with?
I ...
I Even this is a difficult decision. Many people think that a very

abstract activity, like the playing of chess, would be best.

I New approach in the last decade (Urban, Kaliszyk and
others):

I Let’s develop AI on large formal mathematical libraries!

Why AI on large formal mathematical libraries?

I Hundreds of thousands of proofs developed over centuries

I Thousands of definitions/theories encoding our abstract
knowledge

I All of it completely understandable to computers (formality)

I solid semantics: set/type theory

I built by safe (conservative) definitional extensions

I unlike in other “semantic” fields, inconsistencies are
practically not an issue

Deduction and induction over large formal libraries

Large formal libraries allow:

I strong deductive methods – Automated Theorem Proving

I inductive methods like Machine Learning (the libraries are
large)

I combinations of deduction and learning

I examples of positive deduction-induction feedback loops:
solve problems → learn from solutions → solve more problems
...

The “Hammer” approach

Proof Assistant Hammer ATP

Current Goal Lemmas

ITP Proof ATP Proof

I Based on the Current Goal G and the repository: select set L
of potentially useful lemmas from the repository. Machine
Learning

I Send G and L to an ATP. Automated theorem proving
I Let the ATP check if G follows from L and let it produce an

ATP-proof.
(ATP-proof ' subset M of L that is really used to prove G)

I Let the (weak) automation inside the proof assistant
construct an ITP-proof, using M.

Premise Selection

Premise selection

Intuition
Given:

I set of theorems T (together with proofs)

I conjecture c

Find: minimal subset of T that can be used to prove c

More formally

arg min
t⊆T

{|t| | t ` c}

In machine learning terminology

Multi-label classification
Input: set of samples S, where samples are triples s,F (s), L(s)

I s is the sample ID

I F (s) is the set of features of s

I L(s) is the set of labels of s

Output: function f that predicts list of n labels (sorted by
relevance) for set of features

Sample add comm (a + b = b + a) could have:

I F(add comm) = {“+”, “=”, “num”}
I L(add comm) = {num induct, add 0, add suc, add def}

Not exactly the usual machine learning problem

Observations

I Labels correspond to premises and samples to theorems
I Very often same

I Similar theorems are likely to have similar premises

I A theorem may have a similar theorem as a premise

I Theorems sharing logical features are similar

I Theorems sharing rare features are very similar

I Fewer premises = they are more important

I Recently considered theorems and premises are important

Not exactly for the usual machine learning tools

Classifier requirements

I Multi-label output
I Often asked for 1000 or more most relevant lemmas

I Efficient update
I Learning time + prediction time small
I User will not wait more than 10–30 sec for all phases

I Large numbers of features
I Complicated feature relations

k-Nearest Neighbours

k-NN

Standard k-NN
Given set of samples S and features ~f

1. For each s ∈ S, calculate distance d ′(~f , s) = ‖~f − ~F (s)‖
2. Take k samples with smallest distance, and return their labels

Feature weighting for k-NN: IDF

I If a symbol occurs in all formulas, it is boring (redundant)

I A rare feature (symbol, term) is much more informative than
a frequent symbol

I IDF: Inverse Document Frequency:

I Features weighted by the logarithm of their inverse frequency

IDF(t,D) = log
|D|

|{d ∈ D : t ∈ d}|

I This helps a lot in natural language processing

I Smoothed IDF also helps:

IDF1(t,D) =
1

1 + |{d ∈ D : t ∈ d}|

Features

Features used so far for learning

I Symbols
I symbol names or type-instances of symbols

I Types
I type constants, type constructors, and type classes

I Subterms
I various variable normalizations

I Meta-information
I theory name, presence in various databases

Semantic Features

I The features have to express important semantic relations

I The features must be efficient
I In this work, features for:

I Matching
I Unification

I Efficiency achieved by using optimized ATP indexing trees:
I discrimination trees
I substitution trees

I Connections between subterms in a term
I Paths in Term Graphs

I Validity of formulas in diverse finite models
I semantic, but often expensive

The “Hammer” approach: how much can one do?

Proof Assistant Hammer ATP

Current Goal Lemmas

ITP Proof ATP Proof

I Flyspeck formalization in HOL-light — HOL(y)Hammer

I Mizar Mathematical Lirbrary — MizAR

I Isabelle — Sledgehammer

∼ 45% success rate

