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Classical and Constructive Logic

Classically, the meaning of a propositional connective is fixed by its
truth table. This immediately implies

• consistency,

• a decision procedure,

• completeness (w.r.t. Boolean algebra’s).

Constructively (following the Brouwer-Heyting-Kolmogorov
interpretation), the meaning of a connective is fixed by explaining
what a proof is that involves the connective.
Basically, this explains the introduction rule(s) for each connective,
from which the elimination rules follow (Prawitz)
By analysing constructive proofs we then also get

• consistency (from proof normalization),

• a decision procedure (from the subformula property),

• completeness (w.r.t. Heyting algebra’s and Kripke models).
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This talk/paper

• Derive natural deduction rules for a connective from its truth
table definition.
• Also works for constructive logic. (Classical case known from

Milne.)
• Gives natural deduction rules for a connective “in isolation”
• Also gives (constructive) rules for connectives that haven’t

been studied so far, like if-then-else.

• We study constructive if-then-else. (With ⊥ and > it is
functionally complete.)

• We give a general Kripke model for these constructive
connectives. (Sound and Complete)

• We define a general notion of cut-elimination for these
constructive connectives.
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Standard form for natural deduction rules

Γ ` A1 . . . Γ ` An Γ,B1 ` D . . . Γ,Bm ` D

Γ ` D

If the conclusion of a rule is Γ ` D, then the hypotheses of the rule
can be of one of two forms:

1 Γ,B ` D: we are given extra data B to prove D from Γ. We
call B a Casus.

2 Γ ` A: instead of proving D from Γ, we now need to prove A
from Γ. We call A a Lemma.

One obvious advantage: we don’t have to give the Γ explicitly, as
it can be retrieved:

` A1 . . . ` An B1 ` D . . . Bm ` D

` D
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Some well-known constructive rules

Rules that follow this format:

` A ∨ B A ` D B ` D
∨-el

` D

` A ∧ B A ` D
∧-el

` D

` A ` B
∧-in

` A ∧ B

Rule that does not follow this format:

A ` B
→ -in

` A→ B
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Natural Deduction rules from truth tables

Let c be an n-ary connective c with truth table tc .
Each row of tc gives rise to an elimination rule or an introduction
rule for c . (We write ϕ = c(A1, . . . ,An).)

A1 . . . An ϕ
p1 . . . pn 0

7→
` ϕ . . . ` Aj (if pj = 1) . . .Ai ` D (if pi = 0) . . .

el
` D

constructive intro

A1 . . . An ϕ
q1 . . . qn 1

7→
. . . ` Aj (if qj = 1) . . .Ai ` ϕ (if qi = 0) . . .

ini

` ϕ

classical intro

A1 . . . An ϕ
r1 . . . rn 1

7→
ϕ ` D . . . ` Aj (if rj = 1) . . .Ai ` D (if ri = 0) . . .

inc

` D

H. Geuvers and T. Hurkens January 2017, ICLA Deriving natural deduction rules from truth tables 6 / 29



Natural Deduction and Truth Tables
Kripke models

Cut-elimination and Curry-Howard
Radboud University

Examples

Constructive rules for ∧ (3 elim rules and one intro rule):

A B A ∧ B
0 0 0
0 1 0
1 0 0
1 1 1

` A ∧ B A ` D B ` D
∧-ela

` D

` A ∧ B A ` D ` B
∧-elb

` D

` A ∧ B ` A B ` D
∧-elc

` D

` A ` B
∧-in

` A ∧ B

• These rules can be shown to be equivalent to the well-known
constructive rules.

• These rules can be optimized to 3 rules.
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Examples

Rules for ¬: 1 elimination rule and 1 introduction rule.

A ¬A
0 1
1 0

Constructive:

` ¬A ` A
¬-el

` D

A ` ¬A
¬-ini

` ¬A

Classical:

` ¬A ` A
¬-el

` D

¬A ` D A ` D
¬-inc

` D
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Lemma I to simplify the rules

` A1 . . . ` An B1 ` D . . . Bm ` D C ` D

` D

` A1 . . . ` An ` C B1 ` D . . . Bm ` D

` D

is equivalent to the system with these two rules replaced by

` A1 . . . ` An B1 ` D . . . Bm ` D

` D
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Lemma II to simplify the rules

A system with a deduction rule of the form to the left is equivalent
to the system with this rule replaced by the rule on the right.

` A1 . . . ` An B ` D

` D

` A1 . . . ` An

` B
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The constructive connectives

We have already seen the ∧,¬ rules. The optimised rules for
∨,→,> and ⊥ we obtain are:

` A ∨ B A ` D B ` D
∨-el

` D

` A
∨-in1

` A ∨ B

` B
∨-in2

` A ∨ B

` A→ B ` A
→ -el

` B

` B
→ -in1

` A→ B

A ` A→ B
→ -in2

` A→ B

>-in
` >

` ⊥
⊥-el

` D
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The rules for the classical → connective

` A→ B ` A
→ -el

` B

` B
→ -in1

` A→ B

A ` D A→ B ` D
→ -inc

2
` D

Derivation of Peirce’s law:

A ` A

A ` ((A→ B)→ A)→ A

(A→ B)→ A ` (A→ B)→ A A→ B ` A→ B

A→ B, (A→ B)→ A ` A

A→ B, (A→ B)→ A ` ((A→ B)→ A)→ A

A→ B ` ((A→ B)→ A)→ A
→ -inc

2

` ((A→ B)→ A)→ A
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The “If Then Else” connective

Notation: A→B/C for if A thenB elseC .

p q r p→q/r
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

The optimized constructive rules are:

` A→B/C ` A
then-el

` B

` A→B/C A ` D C ` D
else-el

` D

` A ` B
then-in

` A→B/C

A ` A→B/C ` C
else-in

` A→B/C
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Some facts about constructive “If Then Else”

A→B/C is logically equivalent to (A→ B) ∧ (A ∨ C )

We have the well-known classical equivalence

if A thenB elseB ≡ B

We don’t have the other well-known classical equivalences
if (if A thenB elseC ) thenD elseE 6`

if A then (if B thenD elseE ) else (if C thenD elseE )

if A then (if B thenD elseE ) else (if C thenD elseE ) 6`
if (if A thenB elseC ) thenD elseE
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“If Then Else” +>+⊥ is functionally complete

We define the usual constructive connectives in terms of
if-then-else, > and ⊥:

A ∨̇ B := A→A/B A ∧̇ B := A→B/A

A →̇ B := A→B/> ¬̇A := A→⊥/>

Lemma The defined connectives satisfy the original constructive
deduction rules for these same connectives.

Corollary The constructive connective if-then-else, together
with > and ⊥, is functionally complete.
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Kripke semantics for the constructive rules

For each n-ary connective c , we assume a truth table
tc : {0, 1}n → {0, 1} and the defined constructive deduction rules.

Definition A Kripke model is a triple (W ,≤, at) where W is a
set of worlds, ≤ a reflexive, transitive relation on W and a function
at : W → ℘(At) satisfying w ≤ w ′ ⇒ at(w) ⊆ at(w ′).

We define the notion ϕ is true in world w (usually written w  ϕ)
by defining [[ϕ]]w ∈ {0, 1}
Definition of [[ϕ]]w ∈ {0, 1}, by induction on ϕ:

• (atom) if ϕ is atomic, [[ϕ]]w = 1 iff ϕ ∈ at(w).

• (connective) for ϕ = c(ϕ1, . . . , ϕn), [[ϕ]]w = 1 iff for each
w ′ ≥ w , tc([[ϕ1]]w ′ , . . . , [[ϕn]]w ′) = 1 where tc is the truth
table of c .

Γ |= ψ := for each Kripke model and each world w , if [[ϕ]]w = 1 for
each ϕ in Γ, then [[ψ]]w = 1.
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Kripke semantics for the constructive rules

Lemma (Soundness) If Γ ` ψ, then Γ |= ψ
Proof. Induction on the derivation of Γ ` ψ.

For completeness we need to construct a special Kripke model.

• In the literature, the completeness of Kripke semantics is
proved using prime theories.

• A theory is prime if it satisfies the disjunction property: if
Γ ` A ∨ B, then Γ ` A or Γ ` B.

• We may not have ∨ in our set of connective, and we may
have others that “behave ∨-like”’,

• (Later, we will generalize the disjunction property to arbitrary
n-ary constructive connectives.)

• We apply a kind of Lindenbaum construction (also used by
Milne for the classical case).
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Kripke semantics for the constructive rules

Definition For ψ a formula and Γ a set of formulas, we say that
Γ is ψ-maximal if

• Γ 6` ψ and

• for every formula ϕ /∈ Γ we have: Γ, ϕ ` ψ.

NB. Given ψ and Γ such that Γ 6` ψ, we can extend Γ to a
ψ-maximal set Γ′ that contains Γ.

Simple important facts about ψ-maximal sets Γ:

1 For every ϕ, we have ϕ ∈ Γ or Γ, ϕ ` ψ.

2 For every ϕ, if Γ ` ϕ, then ϕ ∈ Γ.
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Completeness of Kripke semantics

Definition We define the Kripke model U = (W ,≤, at):

• W := {(Γ, ψ) | Γ is a ψ-maximal set}.
• (Γ, ψ) ≤ (Γ′, ψ′) := Γ ⊆ Γ′.

• at(Γ, ψ) := Γ ∩ At.

Lemma In the model U we have, for all worlds (Γ, ψ) ∈W :

ϕ ∈ Γ⇐⇒ [[ϕ]](Γ,ψ) = 1 (∀ϕ)

Proof: Induction on the structure of ϕ.

Theorem If Γ |= ψ, then Γ ` ψ.
Proof. Suppose Γ |= ψ and Γ 6` ψ. Then we can find a ψ-maximal
superset Γ′ of Γ such that Γ′ 6` ψ. In particular: ψ is not in Γ′. So
(Γ′, ψ) is a world in the Kripke model U in which each member of
Γ is true, but ψ is not. Contradiction to Γ |= ψ, so Γ ` ψ.
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A generalised disjunction property

We say that the n-ary connective c is i , j-splitting in case the truth
table for c has the following shape

A1 . . . Ai . . . Aj . . . An c(A1, . . . ,An)
− . . . 0 . . . 0 . . . − 0
− . . . 0 . . . 0 . . . − 0
...

...
...

...
...

...
...

...
− . . . 0 . . . 0 . . . − 0
− . . . 0 . . . 0 . . . − 0

In terms of tc :

tc(p1, . . . , pi−1, 0, pi+1, . . . , pj−1, 0, pj+1, . . . , pn) = 0

for all p1, . . . , pi−1, pi+1, . . . , pj−1, pj+1, . . . , pn ∈ {0, 1}.

Lemma Let c be an i , j-splitting connective.
If ` c(A1, . . . ,An), then ` Ai or ` Aj .
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Examples of connectives with a splitting property

A B C most(A,B,C ) A→B/C
0 0 0 0 0
0 0 1 0 1
0 1 0 0 0
0 1 1 1 1
1 0 0 0 0
1 0 1 1 0
1 1 0 1 1
1 1 1 1 1

• most is i , j-splitting for every i , j :
• if ` most(A1,A2,A3), then ` Ai or ` Aj , for any pair i 6= j .

• if-then-else is 1, 3-splitting and 2, 3-splitting (but not
1, 2-splitting):
• if ` A→B/C , then ` A or ` C and also ` B or ` C .
• if ` A→B/C , then not ` A or ` B
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Substituting a deduction in another

Lemma: If Γ ` ϕ and ∆, ϕ ` ψ, then Γ,∆ ` ψ

If Σ is a deduction of Γ ` ϕ and Π is a deduction of ∆, ϕ ` ψ,
then we have the following deduction of Γ,∆ ` ψ:

····
Σ

Γ ` ϕ . . .

····
Σ

Γ ` ϕ
····

Π

∆ ` ψ
In Π, every application of an (axiom) rule at a leaf, deriving
∆′ ` ϕ for some ∆′ ⊇ ∆ is replaced by a copy of a deduction Σ,
which is also a deduction of ∆′, Γ ` ϕ.
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Cuts in constructive logic

Remember that the rules for c arise from rows in the truth table tc :

A1 . . . An c(A1, . . . ,An)
p1 . . . pn 0
q1 . . . qn 1

Definition A constructive direct cut is a pattern of the following
form, where ϕ = c(A1, . . . ,An).

. . .

····
Σj

Γ ` Aj . . .

····
Σi

Γ,Ai ` ϕ . . .
in

Γ ` ϕ . . .

····
Πk

Γ ` Ak . . .

····
Π`

Γ,A` ` D . . .
el

Γ ` D

• qj = 1 for Aj and qi = 0 for Ai

• pk = 1 for Ak and p` = 0 for A`
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Eliminating a direct cut (I)

The elimination of a direct cut is defined by replacing the
deduction pattern by another one. If ` = j (for some `, j), replace

. . .

····
Σj

Γ ` Aj . . .

····
Σi

Γ,Ai ` ϕ . . .
in

Γ ` ϕ . . .

····
Πk

Γ ` Ak . . .

····
Π`

Γ,A` ` D . . .
el

Γ ` D

by

····
Σj

Γ ` Aj . . .

····
Σj

Γ ` Aj
····

Π`

Γ ` D
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Eliminating a direct cut (II)

If k = i (for some k , i), replace

. . .

····
Σj

Γ ` Aj . . .

····
Σi

Γ,Ai ` ϕ . . .
in

Γ ` ϕ . . .

····
Πk

Γ ` Ak . . .

····
Π`

Γ,A` ` D . . .
el

Γ ` D

by

····
Πk

Γ ` Ai . . .

····
Πk

Γ ` Ai····
Σi

Γ ` ϕ . . .

····
Πk

Γ ` Ai . . .

····
Π`

Γ,A` ` D . . .

Γ ` D
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Cuts for if-then-else (I)

The cut-elimination rules for if-then-else are the following.

(then-then)

Γ ` A

····
Σ

Γ ` B
in

Γ ` A→B/C Γ ` A
el

Γ ` B

7→
····

Σ

Γ ` B

(else-then)

····
Σ

Γ,A ` A→B/C Γ ` C
in

Γ ` A→B/C

····
Π

Γ ` A
el

Γ ` B

7→

····
Π

Γ ` A . . .

····
Π

Γ ` A····
Σ

Γ ` A→B/C

····
Π

Γ ` A
el

Γ ` B
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Cuts for if-then-else (II)

(then-else)
····

Σ

Γ ` A Γ ` B
in

Γ ` A→B/C

····
Π

Γ,A ` D Γ,C ` D
el

Γ ` D

7→

····
Σ

Γ ` A . . .

····
Σ

Γ ` A····
Π

Γ ` D

(else-else)

Γ,A ` A→B/C

····
Σ

Γ ` C
in

Γ ` A→B/C Γ,A ` D

····
Π

Γ,C ` D
el

Γ ` D

7→

····
Σ

Γ ` C . . .

····
Σ

Γ ` C····
Π

Γ ` D
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Conclusions

• Simple way to construct deduction rules for new connectives,
constructively and classically

• Study connectives “in isolation”. (Without defining them and
without using other connectives.)

• Generic Kripke semantics

• Correct (?) constructive reading of if-then-else:
• Functionally complete (with > and ⊥)
• Proper constructive “splitting” properties
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Further and Future work, Related work

Further work:
• Add rules for commuting cuts to get the “right” normal form

of derivations. (Done for if-then-else.)
• Study of Normalization for cut-elimination for if-then-else.
• Curry-Howard interpretation of formulas-as-types and

proofs-as-terms:
• Proofs as programs and cut-elimination as evaluation

(reduction)
• Meaning of the new connectives as data types

Future work:
• General definition of classical cut-elimination
• Relation with other term calculi for classical logic: subtraction

logic, λµ (Parigot), λ̄µµ̃ (Curien, Herbelin).

Related work:
• Peter Milne, Jan von Plato and Sara Negri, Peter

Schroeder-Heister, . . .
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