
Representing Streams in Second Order Logic
(Coinduction and Coalgebra in Second Order

Logic)

Herman Geuvers

Radboud University Nijmegen
and

Eindhoven University of Technology
The Netherlands

Seminar “Representing Streams”,
Lorentz Centre, Leiden Dec 14 2012

Representing Streams

I Concrete approaches

I Abstract approach . . . category theory, coalgebra

I Now: abstract approach using second order logic.

Contents:

I Algebra and coalgebra, induction and coinduction

I Defining algebras and coalgebras in Second order logic

I Extracting (correct) programs from proofs

I Bisimulation is the natural equality on coalgebras

Representing Streams

I Concrete approaches

I Abstract approach . . . category theory, coalgebra

I Now: abstract approach using second order logic.

Contents:

I Algebra and coalgebra, induction and coinduction

I Defining algebras and coalgebras in Second order logic

I Extracting (correct) programs from proofs

I Bisimulation is the natural equality on coalgebras

Algebras and Coalgebras
Initial F -algebra: (A, f) s.t. ∀(B, g), ∃!h s.t. the diagram
commutes:

FA
Fh

- FB

A

f ∼=

?

!h
- B

g

?

Final F -coalgebra: (A, f) s.t. ∀(B, g), ∃!h s.t. the diagram
commutes:

B
!h

- A

FB

g

?

Fh
- FA

∼= f

?

Algebras

Initial F -algebra:

FA
Fh

- FB

A

f ∼=

?

!h
- B

g

?

I constructor function, f to A, is basic

I function definition principle: recursion, to define a function h
on A.

I proof principle: induction, proving ∀x ∈ A . . .

Coalgebras

Final F -coalgebra:

B
!h

- A

FB

g

?

Fh
- FA

∼= f

?

I destructor function, f on A, is basic

I function definition principle: corecursion, to define a function
h to A.

I proof principle: coinduction, proving ??

the basic proof principle for coalgebras in bisimulation . . .
Can we reconcile these two dual phenomena?

Coalgebras

Final F -coalgebra:

B
!h

- A

FB

g

?

Fh
- FA

∼= f

?

I destructor function, f on A, is basic

I function definition principle: corecursion, to define a function
h to A.

I proof principle: coinduction, proving ??
the basic proof principle for coalgebras in bisimulation . . .
Can we reconcile these two dual phenomena?

Second Order Logic

I First order language of terms, with countably many constants
and functions symbols.

I Quantification over predicates, relations, . . .
∀P∀x(P(x)→P(x)), ∃R∀xR(x , x).

Deduction rules as expected

Γ ` ∀Pϕ

Γ ` ϕ[P := ψ(x)]

Γ ` ϕ
P not free in Γ

Γ ` ∀Pϕ

Second Order Logic

I First order language of terms, with countably many constants
and functions symbols.

I Quantification over predicates, relations, . . .
∀P∀x(P(x)→P(x)), ∃R∀xR(x , x).

Deduction rules as expected

Γ ` ∀Pϕ

Γ ` ϕ[P := ψ(x)]

Γ ` ϕ
P not free in Γ

Γ ` ∀Pϕ

Natural numbers

We can recover our inductive types as definable predicates in SOL.
For Natural numbers, let 0 be a constant symbol and s a unary
function symbol. Define

N(x) := ∀P(P(0) ∧ ∀yP(y)→ P(s(y)))→ P(x)

We can now prove the following.

N(0), (1)

∀yN(y)→ N(s(y)). (2)

Krivine, Parigot, Leivant: one can actualy program with these
types, using the Curry-Howard formulas-as-types (and
proofs-as-terms) embedding.
The proof of (1) is Zero, the proof of (2) is the Successor.

Natural numbers

We can recover our inductive types as definable predicates in SOL.
For Natural numbers, let 0 be a constant symbol and s a unary
function symbol. Define

N(x) := ∀P(P(0) ∧ ∀yP(y)→ P(s(y)))→ P(x)

We can now prove the following.

N(0), (1)

∀yN(y)→ N(s(y)). (2)

Krivine, Parigot, Leivant: one can actualy program with these
types, using the Curry-Howard formulas-as-types (and
proofs-as-terms) embedding.

The proof of (1) is Zero, the proof of (2) is the Successor.

Natural numbers

We can recover our inductive types as definable predicates in SOL.
For Natural numbers, let 0 be a constant symbol and s a unary
function symbol. Define

N(x) := ∀P(P(0) ∧ ∀yP(y)→ P(s(y)))→ P(x)

We can now prove the following.

N(0), (1)

∀yN(y)→ N(s(y)). (2)

Krivine, Parigot, Leivant: one can actualy program with these
types, using the Curry-Howard formulas-as-types (and
proofs-as-terms) embedding.
The proof of (1) is Zero, the proof of (2) is the Successor.

Intended Model

I Krivine, Parigot: our intended model is some untyped Turing
complete functional language, like untyped λ-calculus or
combinatory logic.

I Krivine: AF2 (second order logic with proof objects,
interpreted as programs)

I Parigot: “ProPre” system, “Programmation avec de Preuves”

We can define new correct algorithms by specifying them:
Example

plus(x , 0) = x

plus(x , s(y)) = s(plus(x , y))

Now we prove

∀xyN(x) ∧ N(y)→ N(plus(x , y))

This proof, interpreted as a λ-term, is a correct implementation of
the Plus function in our computational model.

Intended Model

I Krivine, Parigot: our intended model is some untyped Turing
complete functional language, like untyped λ-calculus or
combinatory logic.

I Krivine: AF2 (second order logic with proof objects,
interpreted as programs)

I Parigot: “ProPre” system, “Programmation avec de Preuves”

We can define new correct algorithms by specifying them:
Example

plus(x , 0) = x

plus(x , s(y)) = s(plus(x , y))

Now we prove

∀xyN(x) ∧ N(y)→ N(plus(x , y))

This proof, interpreted as a λ-term, is a correct implementation of
the Plus function in our computational model.

Proving programs correct

Theorem Krivine
Given a set of equations E specifying the binary function f on
naturals, and a proof p of

∀x , y(N(x) ∧ N(y)→ N(f (x , y)),

the interpretation of p as an untyped λ-term, p is a program that
computes f (i.e. p satisfies E).
[This works for all inductice data-types (lists, trees, . . .)]

Streams

This can also be done coalgebracially.
Let A be some unary predicate, h and t unary function symbols.
Define the unary predicate Str:

Str(x) := ∃P,∀y ,P(y)→ A(h(y)) ∧ P(t(y)) ∧ P(x).

We can now prove the following.

∀y ,Str(y)→ A(h(y)), (3)

∀y ,Str(y)→ Str(t(y)). (4)

Under the Curry-Howard embedding, the proof of (3) is the Head
function and the proof of (4) is the Tail function.

Proving stream programs correct

The Krivine method can be extended to coinductive data types.
Example for streams.

h(f (x , y)) = x

t(f (x , y)) = y

We can prove

∀x , y(A(x) ∧ Str(y)→ Str(f (x , y)))

and this proof ‘is’ a program that implements the ‘cons’ function
on streams.

The more general picture

Definition For P and Q predicates: P ⊆ Q iff ∀x(P(x)→ Q(x)).
Definition A predicate scheme Φ(P) is monotone iff

∀P,Q(P ⊆ Q → Φ(P) ⊆ Φ(Q)).

[A predicate scheme is just a formula with a specific open place for
a unary predicate.]

Inductive and coinductive predicates in SOL

Let Φ(P) be a monotone predicate scheme.
Then Φ has a least fixed point and a greatest fixed point.

Definition

lfp(Φ)(x) := ∀P,Φ(P) ⊆ P → P(x),

gfp(Φ)(x) := ∃P,P ⊆ Φ(P) ∧ P(x).

Lemma

I ∀P,Φ(P) ⊆ P → lfp(Φ) ⊆ P.

I ∀x ,Φ(lfp(Φ))(x)↔ lfp(Φ)(x).

I ∀P,P ⊆ Φ(P)→ P ⊆ gfp(Φ).

I ∀x ,Φ(gfp(Φ))(x)↔ gfp(Φ)(x).

Inductive and coinductive predicates in SOL

Let Φ(P) be a monotone predicate scheme.
Then Φ has a least fixed point and a greatest fixed point.
Definition

lfp(Φ)(x) := ∀P,Φ(P) ⊆ P → P(x),

gfp(Φ)(x) := ∃P,P ⊆ Φ(P) ∧ P(x).

Lemma

I ∀P,Φ(P) ⊆ P → lfp(Φ) ⊆ P.

I ∀x ,Φ(lfp(Φ))(x)↔ lfp(Φ)(x).

I ∀P,P ⊆ Φ(P)→ P ⊆ gfp(Φ).

I ∀x ,Φ(gfp(Φ))(x)↔ gfp(Φ)(x).

Inductive and coinductive predicates in SOL

Let Φ(P) be a monotone predicate scheme.
Then Φ has a least fixed point and a greatest fixed point.
Definition

lfp(Φ)(x) := ∀P,Φ(P) ⊆ P → P(x),

gfp(Φ)(x) := ∃P,P ⊆ Φ(P) ∧ P(x).

Lemma

I ∀P,Φ(P) ⊆ P → lfp(Φ) ⊆ P.

I ∀x ,Φ(lfp(Φ))(x)↔ lfp(Φ)(x).

I ∀P,P ⊆ Φ(P)→ P ⊆ gfp(Φ).

I ∀x ,Φ(gfp(Φ))(x)↔ gfp(Φ)(x).

Category theory in SOL

Which predicate schemes are monotone?
Definition The following polynomial functors all give rise to a
monotone predicate scheme

F (X) ::= X | A | F1(P) + F2(P) | F1(P)× F2(P)

where A is a constant; this includes U, the unit object.
This means that we can define F (P) as a monotone predicate. For
example

U(x) := x = u

F1 + F2 (P)(x) := (x = in1(y) ∧ F1(P)(y)) ∨ (x = in2(y) ∧ F2(P)(y))

F1 × F2 (P)(x) := x = F1(P)(π1(x)) ∧ F2(P)(π2(y))

Back to the naturals and the streams

The naturals are the initial F (X) = 1 + X algebra
The streams over A are the final G (X) = A× X coalgebra

We define F (P)(x) and G (P)(x) and notice that we have 0, s, h
and t such that for P a predicate variable,

F (P)(x) = x = 0 ∨ ∃y(P(y) ∧ x = s(y)),

G (P)(x) = A(h(x)) ∧ P(t(x)).

Note that these predicate schemes can be viewed as ‘rule sets’ as
follows

F (P)(0)

P(y)

F (P)(s(y))

A(h(x)) P(t(x))

G (P)(x)

Back to the naturals and the streams

The naturals are the initial F (X) = 1 + X algebra
The streams over A are the final G (X) = A× X coalgebra
We define F (P)(x) and G (P)(x) and notice that we have 0, s, h
and t such that for P a predicate variable,

F (P)(x) = x = 0 ∨ ∃y(P(y) ∧ x = s(y)),

G (P)(x) = A(h(x)) ∧ P(t(x)).

Note that these predicate schemes can be viewed as ‘rule sets’ as
follows

F (P)(0)

P(y)

F (P)(s(y))

A(h(x)) P(t(x))

G (P)(x)

Properties

Lemma

N(x) ↔ ∀P(F (P) ⊆ P → P(x)),

Str(x) ↔ ∃P((P ⊆ G (P)) ∧ P(x)).

In fact: N is the smallest set closed under F and Str is the
largest set closed under G .
Lemma

I ∀P(F (P) ⊆ P → N ⊆ P).

I ∀x(F (N)(x)↔ N(x)).

I ∀P(P ⊆ G (P)→ P ⊆ Str).

I ∀x(G (Str)(x)↔ Str(x)).

Generalizing to relations

Polynomial functors T also ‘give rise to’ a monotone relation
scheme Tr .
Example of the naturals,
F (P)(x) := x = 0 ∨ ∃y(P(y) ∧ x = s(y)). Let R be a binary
relation variable.

Fr (R)(x , y) := x = y = 0 ∨
∃p, q(R(p, q) ∧ x = s(p) ∧ y = s(q)).

Nr (y1, y2) := ∀R(Fr (R) ⊆ R)→ R(y1, y2)

This canonical relation on N is equivalent to

∀R(R(0, 0) ∧ ∀x1x2(R(x1, x2)→ R(s(x1), s(x2)))

→ R(y1, y2)).

Generalizing to relations

Polynomial functors T also ‘give rise to’ a monotone relation
scheme Tr .
Example of the naturals,
F (P)(x) := x = 0 ∨ ∃y(P(y) ∧ x = s(y)). Let R be a binary
relation variable.

Fr (R)(x , y) := x = y = 0 ∨
∃p, q(R(p, q) ∧ x = s(p) ∧ y = s(q)).

Nr (y1, y2) := ∀R(Fr (R) ⊆ R)→ R(y1, y2)

This canonical relation on N is equivalent to

∀R(R(0, 0) ∧ ∀x1x2(R(x1, x2)→ R(s(x1), s(x2)))

→ R(y1, y2)).

Generalizing to relations

Example of the streams, G (P)(x) := A(h(x)) ∧ P(t(x)). Let R be
a binary relation variable.

Gr (R)(x , y) := (h(x) =A h(y)) ∧ R(t(x), t(y)).

Strr (y1, y2) := ∃R(R ⊆ Gr (R) ∧ R(y1, y2))

Note: The relation Strr is bisimulation equivalence on streams
over A.
Note:

Strr (x , y)⇔ ∀n ∈ Nh(tn(x)) =A h(tn(y))

The latter can be defined (inductively) in SOL.

Generalizing to relations

Example of the streams, G (P)(x) := A(h(x)) ∧ P(t(x)). Let R be
a binary relation variable.

Gr (R)(x , y) := (h(x) =A h(y)) ∧ R(t(x), t(y)).

Strr (y1, y2) := ∃R(R ⊆ Gr (R) ∧ R(y1, y2))

Note: The relation Strr is bisimulation equivalence on streams
over A.

Note:
Strr (x , y)⇔ ∀n ∈ Nh(tn(x)) =A h(tn(y))

The latter can be defined (inductively) in SOL.

Generalizing to relations

Example of the streams, G (P)(x) := A(h(x)) ∧ P(t(x)). Let R be
a binary relation variable.

Gr (R)(x , y) := (h(x) =A h(y)) ∧ R(t(x), t(y)).

Strr (y1, y2) := ∃R(R ⊆ Gr (R) ∧ R(y1, y2))

Note: The relation Strr is bisimulation equivalence on streams
over A.
Note:

Strr (x , y)⇔ ∀n ∈ Nh(tn(x)) =A h(tn(y))

The latter can be defined (inductively) in SOL.

Conclusions, Further work

I Bisimulation is the natural equality on streams

I This approach naturally generates a definition of equality on
other coalgebras.

I Characterize classes of streams in SOL?

