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Continuation calculus; motivation

I Simple model for functional computation. (Inspired by
λ-calculus and term rewriting)

I But: no variable binding, no pattern matching

I Treat continuations as the fundamental object (rather than
expressions or data)

I Deterministic computation

I Turing complete

I Call-by-name and Call-by-value via function definitions



Continuation calculus; rules

I Infinite set of names, N, usually indicated by a capital.
I Terms: either a name, or two terms combined by a dot.

T ::= N | (T .T )

I We write a.b.c as shorthand for (a.b).c .
I A program P consists of a set of rules, of the form

N.x1. . . . .xn → t

I N is a name and x1, . . . , xn are distinct variables,
I t is a term over the variables x1, . . . , xn

I Proviso : for each name N there is at most one rule. We say
that the rule defines the name N.

I Evalutation (reduction) of terms is defined by
if N.x1. . . . .xn → t ∈ P, then

N.t1. . . . .tn →P t[t1/x1, . . . , tn/xn]



Continuation calculus, remarks
Assume we have a program rule

N.x1. . . . .xn → t.

I A term N.t1. . . . .tk with k 6= n does not reduce at all.

I There is only head reduction: M.(N.t1. . . . .tn). . . . does not
reduce.

I Reduction is trivially confluent, because at most one step is
possible.

I Reduction is not necessarily terminating, e.g.

Omega.x → x .x

I There is no pattern matching (as one has e.g. in TRS)

I There is no variable binding (as one has in λ-calculus)

I CC is Turing complete



Continuation calculus, examples

I booleans

True.x .y → x

False.x .y → y

I natural numbers

Zero.z .s → z

Succ.x .z .s → s.x

Interpretation of data as CC-terms:

〈m〉 := Succm.Zero

which is Succ.(Succ. . . . .(Succ.Zero) . . .) m-times.

I lists

Nil.n.l → n

Cons.x .y .n.l → l .x .y



Continuation calculus, Scott data types

Compute functions by computing a value and passing it on to the
next function (continuation)
Natural numbers

Zero.z .s → z

Succ.x .z .s → s.x

Idea: A number takes two continuations z and s and either

I continues with z (if the number is Zero)

I continues with s.t (if the number is Succ.t)

The definition of data in CC follows the Scott data types approach
in untyped λ-calculus (as opposed to the Church approach):

Zero := λ z s.z

Succ := λ x z s.s x

The Scott approach has case distinction as basic and not iteration.



Continuation calculus, example

Natural numbers

Zero.z .s → z

Succ.x .z .s → s.x

For addition we want

Add.〈m〉.〈p〉.r � r .〈m + p〉

The algorithm for addition that we implement is basically the
following term rewriting system.

plus(0,m) → m

plus(S(p),m) → plus(p, S(m))



Continuation calculus, computing addition
Natural numbers

Zero.z .s → z

Succ.x .z .s → s.x

We want Add.〈m〉.〈p〉.r � r .〈m + p〉
So we take as program rule for Add:

Add.x .y .r → x .(r .y).t with t yet to be found

Because then

Add.Zero.y .r → Zero.(r .y).t → r .y

Add.(Succ.x).y .r → Succ.x .(r .y).t → t.x
??→ Add.x .(Succ.y).r

So take t = B.y .r with

B.y .r .x → Add.x .(Succ.y).r



Continuation calculus, call-by-value addition

Natural numbers

Zero.z .s → z

Succ.x .z .s → s.x

Add.x .y .r → x .(r .y).(B.y .r)

B.y .r .x → Add.x .(Succ.y).r

Lemma. For all m, p ∈ N: Add.〈m〉.〈p〉.r � r .〈m + p〉
The function is call-by-value in its first argument:
Add.x .y .r first computes x , say x = 〈p〉, then it returns
r .(Succp.y)



Continuation calculus, call-by-name addition
Natural numbers

Zero.z .s → z

Succ.x .z .s → s.x

Call-by-name addition function:

AddCBN.x .y .z .s → x .(y .z .s).(C.y .s)

C.y .s.x ′ → s.(AddCBN.x ′.y)

Then we have

AddCBN.(Succ.〈m〉).〈p〉.z .s � Succ.〈m〉.(〈p〉.z .s).(C.〈p〉.s)

� C.〈p〉.s.〈m〉
� s.(AddCBN.〈m〉.〈p〉)

which is a normal form.
We need a notion of observational equivalence ≈ to prove

AddCBN.〈m〉.〈p〉 ≈ 〈m + p〉.



Continuation calculus, Observational equivalence

Definition: Terms M and N are observationally equivalent under
program P, when for all extension programs P ′ ⊇ P and terms X :

X .M ↓P′ ⇐⇒ X .N ↓P′

where T ↓P′ denotes that T terminates with the program rules P ′.
Notation: M ≈P N,



A step back: Typed λ-calculus for Scott data?

Scott numerals:

0 := λx f .x

p + 1 := λx f .f p

S := λn.λx f .f n

To type this we need nat = A→ (nat→ A)→ A.
In λ2, we cannot do this . . . unless we extend it with (positive)
recursive types.

nat := µY .∀X .X → (Y → X )→ X

with rule
nat = ∀X .X → (nat→ X )→ X .

[Abadi, Cardelli, Plotkin 1993]
NB. One does not get iteration (recursion) “for free”.



Types for Scott data in CC
In CC everything happens on the ‘top level’. Call this level ⊥.
Types:

T := ⊥|X |T → T |µX .T
under the condition that X is positive in T .
Type equality rule

µX .T = T [µX .T/X ]

Examples:

bool := ⊥ → ⊥ → ⊥
nat := ⊥ → (nat→ ⊥)→ ⊥

listA := ⊥ → (A→ listA → ⊥)→ ⊥

Zero.z .s → z

Succ.x .z .s → s.x

Nil.n.l → n

Cons.x .y .n.l → l .x .y

These are all well-typed now.



Typing addition in CC

nat := ⊥ → (nat→ ⊥)→ ⊥

Zero.z .s → z

Succ.x .z .s → s.x

AddCBV.x .y .r → x .(r .y).(B.y .r)

B.y .r .x → AddCBV.x .(Succ.y).r

Then
AddCBV : nat→ nat→ ¬¬nat

where ¬A is defined as A→ ⊥.
We can also type the call-by-name addition

AddCBN : nat→ nat→ nat



Type system for CC judgments

I program signature Σ: finite list of distinct names assigned to
types
Σ = n1 : A1, . . . , np : Ap

I typing context Γ: finite list of distinct variables assigned to
types
Γ = x1 : A1, . . . , xn : An

I Σ gives the types of the names (specific for a program P).
The context is just a “temporary” set of variables, to define
program rules.

I Two kinds of judgment:

1. Σ ` P to express that, given a program signature Σ, P is a
well-typed program. (So P will consist of program rules.)

2. Γ `Σ M : A to express that the term M with free variables in Γ
has type A, given signature Σ and context Γ.



Derivation rules

I The derivation rules for typing judgments:
x : A ∈ Γ

Γ `Σ x : A

n : A ∈ Σ

Γ `Σ n : A

Γ `Σ M : A→ B Γ `Σ N : A

Γ `Σ M.N : B

Γ `A M : A A = B

Γ `Σ M : B
I The derivation rules for program judgments:

Σ ` ∅

Σ ` P ~x : ~A `Σ q : ⊥ n : A1 → . . .→ Ak → ⊥ ∈ Σ

Σ ` P ∪ {n.x1. . . . .xk −→ q}
if n not defined in P

(NB. ~x : ~A denotes x1 : A1, . . . , xk : Ak)



Call-by-name and call-by-value iteration

To be able to define functions in CC in a generic and safe way, we
add for every data-type two program rules for iteration:

I ItCBND→B for call-by-name iteration from data-type D to B,
Idea: compute first constructor of the output of type B and
pass to the appropriate continuation for type B.

I ItCBVD→B for call-by-value iteration from data-type D to B.
Idea: compute input value completely and then pass on to the
continuation of type B→⊥.



Call-by-name and call-by-value iteration for nat
We show the case for D = B = nat.
Call-by-name:

f1 : nat f2 : nat→ nat x : nat c1 : ⊥ c2 : nat→ ⊥

ItCBNnat→nat.f1.f2.x .c1.c2 : ⊥

with associated reduction rules (program rules).

ItCBNnat→nat.f1.f2 : nat→ nat

Call-by-value:

f1 : ¬¬nat f2 : nat→ ¬¬nat x : nat c : ¬nat

ItCBVnat→nat.f1.f2.x .c : ⊥

with associated reduction rules (program rules).

ItCBVnat→nat.f1.f2 : nat→ ¬¬nat



Call-by-name and call-by-value iteration: program rules

Rules for ItCBNnat→nat:

ItCBN.f1.f2.x .c1.c2 −→ x .(f1.c1.c2).(ItCBNSucc.f1.f2.c1.c2)

ItCBNSucc.f1.f2.c1.c2.x1 −→ f2.(ItCBN.f1.f2.x1).c1.c2

Rules for ItCBVnat→nat:

ItCBV.f1.f2.x .c −→ x .(f1.c).(ItCBVSucc,1.f1.f2.c)

ItCBVSucc,1.f1.f2.c .x1 −→ ItCBV.f1.f2.x1.(ItCBV
Succ,2.f1.f2.c)

ItCBVSucc,2.f1.f2.c .r1 −→ f2.r1.c



Combining call-by-value and call-by-name
A storage operator in CC

StoreNat.n.r −→ n.(r .Zero).(A.r)

A.r .m −→ StoreNat.m.(B.r)

B.r .m′ −→ r .(Succ.m′)

Then StoreNat : nat→ ¬¬nat. If t ≈ 〈p〉, then for any r :

StoreNat.t.r � r .(Succp.Zero)

StoreNat always first evaluates t, before using it. (Mimicking CBV
by CBN.)
In the reverse direction: UnstoreNat : ¬¬nat→ nat defined by:
given f : ¬¬nat, z : ⊥, s : nat→ ⊥,

UnstoreNat.f .z .s −→ f .(UseNat.z .s)

UseNat.z .s.n −→ n.z .s

Lemma For all n ∈ N,
UnstoreNat.(StoreNat. 〈n〉) ≈ 〈n〉.



Results

I Confluence is trivial, because (untyped) CC is deterministic

I Subject reduction holds
I Strong Normalization holds for all CC programs written using

I constructors of data types and
I iterators (cbn and cbv) and
I non-circular well-typed rules

I The SN proof is by
I translation to a typed λ-calculus with simple and pos.rec.

types and CBN and CBV iterator combinators;
I proving that this typed λ-calculus is SN


