
A type system for Continuation Calculus

Herman Geuvers
joint work with Bram Geron (Birmingham), Wouter Geraedts

(Nijmegen), Judith van Stegeren (Nijmegen)

Radboud University Nijmegen
and

Eindhoven University of Technology
The Netherlands

Types 2014, Paris
March 12, 2014

Contents

I Continuation calculus: motivation and rules

I Scott data-types

I Typed continuation calculus

I Call-by-value and Call-by name iteration

I Results

Continuation calculus; motivation

I Simple model for functional computation. (Inspired by
λ-calculus and term rewriting)

I But: no variable binding, no pattern matching

I Treat continuations as the fundamental object (rather than
expressions or data)

I Deterministic computation

I Turing complete

I Call-by-name and Call-by-value via function definitions

Continuation calculus; rules

I Infinite set of names, N, usually indicated by a capital.
I Terms: either a name, or two terms combined by a dot.

T ::= N | (T .T)

I We write a.b.c as shorthand for (a.b).c .
I A program P consists of a set of rules, of the form

N.x1.xn → t

I N is a name and x1, . . . , xn are distinct variables,
I t is a term over the variables x1, . . . , xn

I Proviso : for each name N there is at most one rule. We say
that the rule defines the name N.

I Evalutation (reduction) of terms is defined by
if N.x1.xn → t ∈ P, then

N.t1.tn →P t[t1/x1, . . . , tn/xn]

Continuation calculus, remarks
Assume we have a program rule

N.x1.xn → t.

I A term N.t1.tk with k 6= n does not reduce at all.

I There is only head reduction: M.(N.t1.tn). . . . does not
reduce.

I Reduction is trivially confluent, because at most one step is
possible.

I Reduction is not necessarily terminating, e.g.

Omega.x → x .x

I There is no pattern matching (as one has e.g. in TRS)

I There is no variable binding (as one has in λ-calculus)

I CC is Turing complete

Continuation calculus, examples

I booleans

True.x .y → x

False.x .y → y

I natural numbers

Zero.z .s → z

Succ.x .z .s → s.x

Interpretation of data as CC-terms:

〈m〉 := Succm.Zero

which is Succ.(Succ.(Succ.Zero) . . .) m-times.

I lists

Nil.n.l → n

Cons.x .y .n.l → l .x .y

Continuation calculus, Scott data types

Compute functions by computing a value and passing it on to the
next function (continuation)
Natural numbers

Zero.z .s → z

Succ.x .z .s → s.x

Idea: A number takes two continuations z and s and either

I continues with z (if the number is Zero)

I continues with s.t (if the number is Succ.t)

The definition of data in CC follows the Scott data types approach
in untyped λ-calculus (as opposed to the Church approach):

Zero := λ z s.z

Succ := λ x z s.s x

The Scott approach has case distinction as basic and not iteration.

Continuation calculus, example

Natural numbers

Zero.z .s → z

Succ.x .z .s → s.x

For addition we want

Add.〈m〉.〈p〉.r � r .〈m + p〉

The algorithm for addition that we implement is basically the
following term rewriting system.

plus(0,m) → m

plus(S(p),m) → plus(p, S(m))

Continuation calculus, computing addition
Natural numbers

Zero.z .s → z

Succ.x .z .s → s.x

We want Add.〈m〉.〈p〉.r � r .〈m + p〉
So we take as program rule for Add:

Add.x .y .r → x .(r .y).t with t yet to be found

Because then

Add.Zero.y .r → Zero.(r .y).t → r .y

Add.(Succ.x).y .r → Succ.x .(r .y).t → t.x
??→ Add.x .(Succ.y).r

So take t = B.y .r with

B.y .r .x → Add.x .(Succ.y).r

Continuation calculus, call-by-value addition

Natural numbers

Zero.z .s → z

Succ.x .z .s → s.x

Add.x .y .r → x .(r .y).(B.y .r)

B.y .r .x → Add.x .(Succ.y).r

Lemma. For all m, p ∈ N: Add.〈m〉.〈p〉.r � r .〈m + p〉
The function is call-by-value in its first argument:
Add.x .y .r first computes x , say x = 〈p〉, then it returns
r .(Succp.y)

Continuation calculus, call-by-name addition
Natural numbers

Zero.z .s → z

Succ.x .z .s → s.x

Call-by-name addition function:

AddCBN.x .y .z .s → x .(y .z .s).(C.y .s)

C.y .s.x ′ → s.(AddCBN.x ′.y)

Then we have

AddCBN.(Succ.〈m〉).〈p〉.z .s � Succ.〈m〉.(〈p〉.z .s).(C.〈p〉.s)

� C.〈p〉.s.〈m〉
� s.(AddCBN.〈m〉.〈p〉)

which is a normal form.
We need a notion of observational equivalence ≈ to prove

AddCBN.〈m〉.〈p〉 ≈ 〈m + p〉.

Continuation calculus, Observational equivalence

Definition: Terms M and N are observationally equivalent under
program P, when for all extension programs P ′ ⊇ P and terms X :

X .M ↓P′ ⇐⇒ X .N ↓P′

where T ↓P′ denotes that T terminates with the program rules P ′.
Notation: M ≈P N,

A step back: Typed λ-calculus for Scott data?

Scott numerals:

0 := λx f .x

p + 1 := λx f .f p

S := λn.λx f .f n

To type this we need nat = A→ (nat→ A)→ A.
In λ2, we cannot do this . . . unless we extend it with (positive)
recursive types.

nat := µY .∀X .X → (Y → X)→ X

with rule
nat = ∀X .X → (nat→ X)→ X .

[Abadi, Cardelli, Plotkin 1993]
NB. One does not get iteration (recursion) “for free”.

Types for Scott data in CC
In CC everything happens on the ‘top level’. Call this level ⊥.
Types:

T := ⊥|X |T → T |µX .T
under the condition that X is positive in T .
Type equality rule

µX .T = T [µX .T/X]

Examples:

bool := ⊥ → ⊥ → ⊥
nat := ⊥ → (nat→ ⊥)→ ⊥

listA := ⊥ → (A→ listA → ⊥)→ ⊥

Zero.z .s → z

Succ.x .z .s → s.x

Nil.n.l → n

Cons.x .y .n.l → l .x .y

These are all well-typed now.

Typing addition in CC

nat := ⊥ → (nat→ ⊥)→ ⊥

Zero.z .s → z

Succ.x .z .s → s.x

AddCBV.x .y .r → x .(r .y).(B.y .r)

B.y .r .x → AddCBV.x .(Succ.y).r

Then
AddCBV : nat→ nat→ ¬¬nat

where ¬A is defined as A→ ⊥.
We can also type the call-by-name addition

AddCBN : nat→ nat→ nat

Type system for CC judgments

I program signature Σ: finite list of distinct names assigned to
types
Σ = n1 : A1, . . . , np : Ap

I typing context Γ: finite list of distinct variables assigned to
types
Γ = x1 : A1, . . . , xn : An

I Σ gives the types of the names (specific for a program P).
The context is just a “temporary” set of variables, to define
program rules.

I Two kinds of judgment:

1. Σ ` P to express that, given a program signature Σ, P is a
well-typed program. (So P will consist of program rules.)

2. Γ `Σ M : A to express that the term M with free variables in Γ
has type A, given signature Σ and context Γ.

Derivation rules

I The derivation rules for typing judgments:
x : A ∈ Γ

Γ `Σ x : A

n : A ∈ Σ

Γ `Σ n : A

Γ `Σ M : A→ B Γ `Σ N : A

Γ `Σ M.N : B

Γ `A M : A A = B

Γ `Σ M : B
I The derivation rules for program judgments:

Σ ` ∅

Σ ` P ~x : ~A `Σ q : ⊥ n : A1 → . . .→ Ak → ⊥ ∈ Σ

Σ ` P ∪ {n.x1.xk −→ q}
if n not defined in P

(NB. ~x : ~A denotes x1 : A1, . . . , xk : Ak)

Call-by-name and call-by-value iteration

To be able to define functions in CC in a generic and safe way, we
add for every data-type two program rules for iteration:

I ItCBND→B for call-by-name iteration from data-type D to B,
Idea: compute first constructor of the output of type B and
pass to the appropriate continuation for type B.

I ItCBVD→B for call-by-value iteration from data-type D to B.
Idea: compute input value completely and then pass on to the
continuation of type B→⊥.

Call-by-name and call-by-value iteration for nat
We show the case for D = B = nat.
Call-by-name:

f1 : nat f2 : nat→ nat x : nat c1 : ⊥ c2 : nat→ ⊥

ItCBNnat→nat.f1.f2.x .c1.c2 : ⊥

with associated reduction rules (program rules).

ItCBNnat→nat.f1.f2 : nat→ nat

Call-by-value:

f1 : ¬¬nat f2 : nat→ ¬¬nat x : nat c : ¬nat

ItCBVnat→nat.f1.f2.x .c : ⊥

with associated reduction rules (program rules).

ItCBVnat→nat.f1.f2 : nat→ ¬¬nat

Call-by-name and call-by-value iteration: program rules

Rules for ItCBNnat→nat:

ItCBN.f1.f2.x .c1.c2 −→ x .(f1.c1.c2).(ItCBNSucc.f1.f2.c1.c2)

ItCBNSucc.f1.f2.c1.c2.x1 −→ f2.(ItCBN.f1.f2.x1).c1.c2

Rules for ItCBVnat→nat:

ItCBV.f1.f2.x .c −→ x .(f1.c).(ItCBVSucc,1.f1.f2.c)

ItCBVSucc,1.f1.f2.c .x1 −→ ItCBV.f1.f2.x1.(ItCBV
Succ,2.f1.f2.c)

ItCBVSucc,2.f1.f2.c .r1 −→ f2.r1.c

Combining call-by-value and call-by-name
A storage operator in CC

StoreNat.n.r −→ n.(r .Zero).(A.r)

A.r .m −→ StoreNat.m.(B.r)

B.r .m′ −→ r .(Succ.m′)

Then StoreNat : nat→ ¬¬nat. If t ≈ 〈p〉, then for any r :

StoreNat.t.r � r .(Succp.Zero)

StoreNat always first evaluates t, before using it. (Mimicking CBV
by CBN.)
In the reverse direction: UnstoreNat : ¬¬nat→ nat defined by:
given f : ¬¬nat, z : ⊥, s : nat→ ⊥,

UnstoreNat.f .z .s −→ f .(UseNat.z .s)

UseNat.z .s.n −→ n.z .s

Lemma For all n ∈ N,
UnstoreNat.(StoreNat. 〈n〉) ≈ 〈n〉.

Results

I Confluence is trivial, because (untyped) CC is deterministic

I Subject reduction holds
I Strong Normalization holds for all CC programs written using

I constructors of data types and
I iterators (cbn and cbv) and
I non-circular well-typed rules

I The SN proof is by
I translation to a typed λ-calculus with simple and pos.rec.

types and CBN and CBV iterator combinators;
I proving that this typed λ-calculus is SN

