
Relating Apartness and Bisimulation

Herman Geuvers

Radboud Univ. Nijmegen and TU Eindhoven

December 17, 2020
jww Bart Jacobs

Overview

I Bisimulation and apartness

I LTSs and branching bisimulation

I Branching apartness

I Proving properties about branching apartness and using it

Deterministic Finite Automata
A DFA M = (A,K , δ, ↓) consists of an alphabet A, a set of states
K and δ : K × A→ K , ↓: K → 2. A DFA M gives rise to the
notions of bisimulation for M and apartness for M.
• R ⊆ K × K is a M-bisimulation if it satisfies the following rule.

R(q1, q2)

q1 ↓ ⇔ q2 ↓ ∧ ∀a ∈ A∀p1, p2(q1 →a p1 ∧ q2 →a p2 =⇒ R(p1, p2))

Two states q1, q2 ∈ K are M-bisimilar, q1 ↔M q2, is defined by

q1 ↔M q2 := ∃R ⊆ K ×K (R is a M-bisimulation and R(q1, q2)).

• Q ⊆ K × K is a M-apartness if it satisfies the following rules.

q1 →a p1 q2 →a p2 Q(p1, p2)

Q(q1, q2)

q1 ↓ 6⇔ q2 ↓

Q(q1, q2)

Two states q1, q2 ∈ K are M-apart, q1 #M q2, if

q1 #M q2 := ∀Q ⊆ K×K (if Q is a M-apartness then Q(q1, q2)).

Example

q0 q1 q2

q3

a

b

a, b

a, b

a
b

q3 →a q0 q0 →a q1

¬(q0 ↓) ∧ q1 ↓

Q(q0, q1)

Q(q3, q0)

A bisimulation is given by q1 ∼ q2. It can be shown that q0 #M q3
because for every apartness Q we have the derivation given on the
right.

To be M-apart is the smallest relation satisfying specific closure
properties, so it is an inductive property.
The closure properties yield a derivation system for proving that
two elements are M-apart.

For the DFA case, these rules are:

q1 →a p1 q2 →a p2 p1 #M p2

q1 #M q2

q1 ↓ 6⇔ q2 ↓

q1 #M q2

Apartness in constructive analysis
In constructive real analysis (and similarly when talking about
computable real numbers), one takes apartness as a primitive and
defines equality as its negation:

x # y ' we can find a proper distance δ ∈ Q between x and y

x = y := ¬(x # y)

A relation is usually only called an apartness relation if it satisfies
three properties.
Definition. A relation # is a proper apartness relation if it is

I irreflexive: ∀x (¬x # x),

I symmetric: ∀x , y (x # y =⇒ y # x),

I co-transitive: ∀x , y , z (x # y =⇒ x # z ∨ z # y).

Lemma. For R a relation, R is an equivalence relation if and only
if ¬R is a proper apartness relation.
Proof. The only interesting property to check is that R is
transitive iff ¬R is co-transitive.

The general categorical picture

Bisimulation and apartness can be defined by induction over the
structure of the polynomial functor F : Set→ Set that we
consider the coalgebra for.

I For DAs: c : K → F (K) with F (X) = XA × 2.

I For streams over A: c : K → F (K) with F (X) = A× X .

We have the following result relating bisimulation and apartness.
Lemma.

1. R is a bisimulation if and only if ¬R is an apartness.

2. The relation ↔, the union of all bisimulations:
↔ =

⋃
{R | R is a bisimulation}, is itself a bisimulation.

3. The relation #, the intersection of all apartness relations:
=

⋂
{Q | Q is an apartness relation}, is itself also an

apartness relation.

4. ↔ = ¬#.

LTSs and branching bisimulation

A labelled transition systems, LTS, is a tuple (X ,Aτ ,→), where

I X is a set of states,

I Aτ = A ∪ {τ} is a set of actions, with τ the special silent
action,

I → ⊆ X × Aτ × X is the transition relation.
We write q1 →u q2 for (q1, u, q2) ∈ →. Furthermore, �τ

denotes the reflexive transitive closure of →τ .

NB. We reserve q1 →a q2 to denote a transition with an a-step
with a ∈ A (so a 6= τ).

The notion of bisimulation for LTSs we consider is branching
bisimulation. Here, the categorical picture is not completely clear,
so there is no “canonical” way for constructing the bisimulation
and apartness from the functor and the co-algebra.

Branching bisimulation

We give the definition of branching bisimulation in derivation rule
style: R ⊆ X × X is a branching bisimulation relation if the
following derivation rules hold for R.

q →a q
′ R(q, p)

bisb
∃p′, p′′(p �τ p′ →a p

′′ ∧ R(q, p′) ∧ R(q′, p′′))

q →τ q′ R(q, p)
bisbτ

R(q′, p) ∨ ∃p′, p′′(p �τ p′ →τ p′′ ∧ R(q, p′) ∧ R(q′, p′′))

R(p, q)
symm

R(q, p)

States q, p are branching bisimilar, q ↔b p if there exists a
branching bisimulation relation R such that R(q, p).

Branching apartness
We define branching apartness by transporting the rules for
branching bisimulation to derivation rules for Q ⊆ X × X where
¬Q is a branching bisimulation.
Definition. Q ⊆ X × X is a branching apartness in case the
following derivation rules hold for Q.

q →a q
′ ∀p′, p′′(p �τ p′ →a p

′′ =⇒ Q(q, p′) ∨ Q(q′, p′′))
inb

Q(q, p)

q →τ q′ Q(q′, p) ∀p′, p′′(p �τ p′ →τ p′′ =⇒ Q(q, p′) ∨ Q(q′, p′′))
inbτ

Q(q, p)

Q(p, q)
symm

Q(q, p)

States q and p are branching apart, q #
b
p, if for all branching

apartness relations Q, we have Q(q, p).

Branching bisimulation and branching apartness

I By definition: Q is a branching apartness iff ¬Q is a
branching bisimulation, so

I q #
b
p if and only if ¬(q ↔b p).

I As q #
b
p is an inductive notion, we have that q #

b
p if and

only it is derivable using the (symm) rule and the following
two:

q →a q
′ ∀p′, p′′(p �τ p′ →a p

′′ =⇒ q #
b
p′ ∨ q′ #

b
p′′)

inb
q #

b
p

q →τ q′ q′ #
b
p ∀p′, p′′(p �τ p′ →τ p′′ =⇒ q #

b
p′ ∨ q′ #

b
p′′)

inbτ
q #

b
p

Example
s

s1

s4

s3
s2

τ d
c

c

r

r1

r3

r2

τ

d

c

We give a derivation of s #
b
r :

s →c s2 [r →τ r1 →c r3]

s →d s3 X

s #
b
r1

s #
b
r1 ∨ s2 #

b
r3

s #
b
r

NB: Remember the derivation rule:

q →a q
′ ∀p′, p′′(p �τ p′ →a p

′′ =⇒ q #
b
p′ ∨ q′ #

b
p′′)

inb
q #

b
p

Proving that ↔b is an equivalence relation

This is remarkably tricky, because if R1,R2 are branching
bisimulation relations, then R1 ◦ R2 need not be a branching
bisimulation relation. (So the “obvious” proof of transitivity fails.)

Twan Basten used the notion of semi-branching bisimulation
relation and proved that (1) “being semi-branching bisimilar”,
↔sb, is an equivalence relation and (2) ↔sb coincides with ↔b.

We similarly introduce semi-branching apartness relation, #
sb

, by

replacing rule (inbτ) by

q →τ q′ q′ #
sb

p

∀p′, p′′(p �τ p′ →τ p′′ =⇒ q′ #
sb

p′′ ∨ (q #
sb

p′ ∧ q #
sb

p′′))
insbτ

q #
sb

p

So, q #
sb

p in case this is derivable by these adapted set of rules.

Proving the co-transitivity of branching apartness

The proof of co-transitivity of #
b

(and thus that ↔b is an
equivalence relation) proceeds in the following steps.

1. We prove q #
sb

p =⇒ q #
b
p (by induction on q #

sb
p).

2. We prove a number of basic lemmas for #
sb

.
(Typically useful results we would also like to have for #

b
, but

we can’t obtain directly for #
b
.)

3. We prove the apartness stuttering property for #
sb

.

4. We prove that q #
b
p =⇒ q #

sb
p (by induction on

q #
sb

p, using the apartness stuttering property) and we
conclude that #

b
= #

sb
.

5. We prove co-transitivity for #
b

using the lemmas under (2).

For one of the basic lemmas under (2) we move over to the
“bisimulation view”, as the result seems easier to obtain there.

Stuttering and apartness stuttering

The stuttering property states that the following holds (for ↔b)

r →τ r1 →τ . . .→τ rn → t (n ≥ 0) r ↔b p t ↔b p

∀i (1 ≤ i ≤ n) ri ↔b p

If we cast this as a property about apartness we obtain the
following apartness stuttering property

r �τ q �τ t q # p
stut

r # p ∨ p # t

Lemma. The apartness stuttering property holds for #
sb

Proof. By induction on q #
sb

p (using various auxiliary
properties).

Variations on the rules

We can show that other rules are sound for proving apartness, for
example (thanks to David Jansen):

q →a q
′ ∀p′, p′′(p �τ p′ →a p

′′ =⇒ p #
b
p′ ∨ q′ #

b
p′′)

inAb
q #

b
p

Or, combining bisimulation and apartness, the following rule is
sound:

q →a q
′ ∀p′, p′′(p �τ p′ →a p

′′ ∧ q′ ↔b p′′ =⇒ q #
b
p′)

in
↔b
b

q #
b
p

Using #
b
to prove q ↔b p

Example.
q

q′

a a p

a

We search for the shortest derivation of q #
b
p and notice it

doesn’t exist, and therefore we can conclude that ¬q #
b
p and so

q ↔b p. In our search for a deduction we keep track of goals that
we have already encountered.

q →a q
′

q′ →a q

fail

q′ #
b
p ∨ q #

b
p

q′ #
b
p

q #
b
p ∨ q′ #

b
p

q #
b
p

From q #
b
p to a distinguishing formula (example)

q0

q1

q2

q3 q4

d

d

ce c

d

c

p0

p1

p2

p3

d

τ

ce d c

q0 →d q2

p1 →e p0

p1 #
b
q2

q2 #
b
p1

q0 #
b
p0 ∨ q2 #

b
p1

q0 →d q1

q1 →e q0

q1 #
b
p3

q0 #
b
p2 ∨ q1 #

b
p3

∀p′, p′′(p2 �τ p′ →d p′′ =⇒ q0 #
b
p′ ∨ q1 #

b
p′′)

q0 #
b
p2

q0 #
b
p2 ∨ q2 #

b
p3

∀p′, p′′(p0 �τ p′ →d p′′ =⇒ q0 #
b
p′ ∨ q2 #

b
p′′)

q0 #
b
p0

From q #
b
p to a distinguishing formula (example)

q0

q1

q2

q3 q4

d

d

ce c

d

c

p0

p1

p2

p3

d

τ

ce d c

I Henri Korver has an algorithm that generates an HMLU
(Hennessy-Milner Logic with Until) formula Φ that
distinguishes two states s and t in case ¬(s ↔b t).

I We can extract such a formula from a derivation of s #
b
t.

For the example, the formula derived from the derivation of
q0 #

b
p0 is

Φ := (tt 〈d〉 (tt 〈e〉 tt)) 〈d〉 ¬(tt 〈e〉 tt)

We have q0 |= Φ and p0 6|= Φ.

Questions?

