# Proof terms for generalized classical natural deduction

Herman Geuvers and Tonny Hurkens

Radboud University Nijmegen and Technical University Eindhoven NL

Types Conference 2021 Leiden Univ. Netherlands



#### Standard form for natural deduction rules

$$\frac{\Gamma \vdash A_1 \quad \dots \quad \Gamma \vdash A_n \qquad \Gamma, B_1 \vdash D \quad \dots \quad \Gamma, B_m \vdash D}{\Gamma \vdash D}$$

If the conclusion of a rule is  $\Gamma \vdash D$ , then the hypotheses of the rule can be of one of two forms:

- Γ ⊢ A: instead of proving D from Γ, we now need to prove A from Γ. We call A a Lemma.
- Q Γ, B ⊢ D: we are given extra data B to prove D from Γ. We call B a Casus.

We don't give the  $\Gamma$  explicitly (it can be retrieved):

$$\frac{\vdash A_1 \quad \dots \quad \vdash A_n \quad B_1 \vdash D \quad \dots \quad B_m \vdash D}{\vdash D}$$

#### Natural Deduction rules from truth tables

Let *c* be an *n*-ary connective *c* with truth table  $t_c$ . Each row of  $t_c$  gives rise to an elimination rule or an introduction rule for *c*. (We write  $\Phi = c(A_1, \ldots, A_n)$ .)

$$\begin{array}{c|cccc} A_{1} & \dots & A_{n} & \Phi \\ \hline p_{1} & \dots & p_{n} & 0 \end{array} & \mapsto & \begin{array}{c} \vdash \Phi \dots \vdash A_{j} \text{ (if } p_{j} = 1) \dots A_{i} \vdash D \text{ (if } p_{i} = 0) \dots \\ \vdash D \end{array} el$$

$$\begin{array}{c} \text{constructive intro} \\ \hline A_{1} & \dots & A_{n} & \Phi \\ \hline q_{1} & \dots & q_{n} & 1 \end{array} & \mapsto & \begin{array}{c} \dots \vdash A_{j} \text{ (if } q_{j} = 1) \dots A_{i} \vdash \Phi \text{ (if } q_{i} = 0) \dots \\ \vdash \Phi \end{array} in^{i}$$

$$\begin{array}{c} \text{classical intro} \\ \hline A_{1} & \dots & A_{n} & \Phi \\ \hline r_{1} & \dots & r_{n} & 1 \end{array} & \mapsto & \begin{array}{c} \Phi \vdash D \dots \vdash A_{j} \text{ (if } r_{j} = 1) \dots A_{i} \vdash D \text{ (if } r_{i} = 0) \dots \\ \vdash D \end{array} in^{i}$$

#### Examples

Rules for  $\neg$ : 1 elimination rule and 1 introduction rule.

| Α | $\neg A$ |
|---|----------|
| 0 | 1        |
| 1 | 0        |

Constructive:

$$\frac{\vdash \neg A \vdash A}{\vdash D} \neg -\text{el} \qquad \frac{A \vdash \neg A}{\vdash \neg A} \neg -\text{in}^{i}$$

Classical:

$$\frac{\vdash \neg A \vdash A}{\vdash D} \neg -\text{el} \qquad \frac{\neg A \vdash D \quad A \vdash D}{\vdash D} \neg -\text{in}^{c}$$

- From the truth table of a connective *c* of arity *n*, we derive 2<sup>*n*</sup> rules.
- These can be optimized to fewer (equivalent) rules. E.g. for ∧ and ∨ we then get the well-known derivation rules.

#### The rules for the classical $\rightarrow$ connective

$$\frac{\vdash A \to B \quad \vdash A}{\vdash B} \to -\text{el} \qquad \frac{\vdash B}{\vdash A \to B} \to -\text{in}_1 \qquad \frac{A \to B \vdash D \quad A \vdash D}{\vdash D} \to -\text{in}_2^c$$

#### Derivation of Peirce's law:

$$\frac{A \vdash A}{A \vdash ((A \rightarrow B) \rightarrow A) \rightarrow A} \xrightarrow{A \rightarrow B} \rightarrow A \rightarrow B \vdash A \rightarrow B}{A \rightarrow B, (A \rightarrow B) \rightarrow A \vdash A}$$

$$\frac{A \vdash A}{A \vdash ((A \rightarrow B) \rightarrow A) \rightarrow A} \xrightarrow{A \rightarrow B} \rightarrow ((A \rightarrow B) \rightarrow A) \rightarrow A}{A \rightarrow B \vdash ((A \rightarrow B) \rightarrow A) \rightarrow A}$$

$$\vdash ((A \rightarrow B) \rightarrow A) \rightarrow A$$

- For monotone connectives, the constructive and classical rules are equivalent. (E.g. ∧, ∨)
- For the non-monotonic connectives → and ¬, the classical intro rule for → implies the classical intro rule for ¬ (and vice versa).
- This holds in general: one classical intro rule for a non-monotonic connective makes all connectives classical.

(NB. c is monotonic if the truth table of c,  $t_c : \{0,1\}^n \to \{0,1\}$  is a monotonic function w.r.t. the ordering induced by  $0 \le 1$ .)

#### Curry-Howard proofs-as-terms for classical logic

 $t ::= x \mid (\lambda y : A.t) \star_r \{\overline{t} ; \overline{\lambda x : A.t}\} \mid t \cdot_r [\overline{t} ; \overline{\lambda x : A.t}]$ 

where x ranges over variables and r ranges over the rules of all the connectives.

The terms are typed using the following derivation rules.

$$\frac{\overline{\Gamma \vdash x_i : A_i}}{\Gamma \vdash x_i : A_i} \text{ if } x_i : A_i \in \Gamma$$

$$\frac{z : \Phi \vdash t : D \quad \dots \vdash p_i : A_i \dots \quad \dots y_j : A_j \vdash q_j : D \dots}{\vdash (\lambda z : \Phi \cdot t) \star_r \{\overline{p} ; \overline{\lambda y : A \cdot q}\} : D} \text{ in}$$

$$\frac{\vdash t : \Phi \quad \dots \vdash p_k : A_k \dots \quad \dots y_\ell : A_\ell \vdash q_\ell : D}{\vdash t \cdot r [\overline{p} ; \overline{\lambda y : A \cdot q}] : D} \text{ el}$$

# Reduction for proof terms in classical logic

- First perform permutation reductions.
- Then we perform detour reductions.

This is similar to the constructive case, except for now

- a term is in permutation normal form if all lemmas are variables,
- a detour is an elimination of Φ followed by an introduction of Φ.

NB: in constructive logic, a "detour" is an introduction directly followed by an elimination. Here it is the other way around, and the introduction need not follow the elimination directly.

We obtain a deduction in permutation normal form by moving elimination or introduction rules that have a non-trivial lemma upwards, until all lemmas become trivial: the proof-terms are variables. (This only works for the classical case!)

### Detours for proof terms in classical logic

A detour is a pattern of the following shape

$$(\lambda x : \Phi \dots (x \cdot [\overline{v}; \overline{\lambda w : A.s}]) \dots) \star \{\overline{z}; \overline{\lambda y : A.q}\}$$

that is, an elimination of  $\Phi = c(A_1, \ldots, A_n)$  followed by an introduction of  $\Phi$ , with an arbitrary number of steps in between.

- For terms in permutation normal form, detours can be eliminated,
- One obtains a term in normal form which satisfies the sub-formula property.

Notes to the pattern of a detour:

- the indicated occurrence need not be the only occurrence of x
- variable x may not occur at all; that is the simplest situation.

Eliminating detours is done by the following reduction steps:

• 
$$(\lambda x : \Phi \dots (x \cdot [\overline{v}; \overline{\lambda w} : A.s]) \dots) \star \{\overline{z}; \overline{\lambda y} : A.q\} \longrightarrow_a$$
  
 $(\lambda x : \Phi \dots (s_{\ell}[w_{\ell} := z_i]) \dots) \star \{\overline{z}; \overline{\lambda y} : A.q\}$   
if  $i = \ell (A_i = A_{\ell})$  is a "matching case" for the subformulas of  $\Phi$ .

• 
$$(\lambda x : \Phi \dots (x \cdot [\overline{v}; \overline{\lambda w} : A.s]) \dots) \star \{\overline{z}; \overline{\lambda y} : A.q\} \longrightarrow_a$$
  
 $(\lambda x : \Phi \dots (q_j[y_j := v_k]) \dots) \star \{\overline{z}; \overline{\lambda y} : A.q\}$   
if  $j = k (A_j = A_k)$  is a "matching case" for the subformulas of  $\Phi$ 

• 
$$(\lambda x : \Phi.t) \star \{\overline{z}; \overline{\lambda y : A.q}\} \longrightarrow_a t$$
 if  $x \notin FV(t)$ .

Tonny Hurkens has given a proof that this normalizes

The rules for implication are as follows.

$$\frac{t:A \to B \quad a:A \quad y:B \vdash q:D}{\vdash t \cdot [a; \lambda y.q]:D} \text{ el-f} \qquad \qquad \frac{t:A \to B \quad a:A}{\vdash t \cdot [a; -]:B} \text{ el-s}$$

$$\frac{x:A \to B \vdash t:D \quad y:A \vdash q:D}{\vdash (\lambda x.t) \star \{; \lambda y.q\}:D} \text{ in}^{c} \qquad \qquad \frac{x:A \to B \vdash t:D \quad b:B}{\vdash (\lambda x.t) \star \{b; \}:D} \text{ in}_{1}$$

el-s and el-f are equivalent:  $t \cdot [a; -] := t \cdot [a; \lambda y.y]$ , but for permutation reduction, el-f is essential.

# Example (I)

$$\frac{t: B \to C}{t \cdot [s \cdot [a; -]; B]} \stackrel{a: A \to B \quad a: A}{\text{el-s}} \text{el-s}}{t \cdot [s \cdot [a; -]; -]: C}$$

This proof is not in permutation normal form.

It reduces to

$$\frac{s:A \to B \quad a:A}{s \cdot [a; \lambda y.t \cdot [y; -]]:C} \stackrel{f:B \to C \quad (y:B)^1}{el-s} el-s$$

# Example (II)

$$\frac{t: A \to B \to C \quad a: A}{t \cdot [a; -]: B \to C \quad b: B}$$
el-s
$$\frac{t \cdot [a; -]: C}{t \cdot [a; -]: C}$$
el-s

This proof is not in permutation normal form.

It reduces to

$$\frac{t:A \to B \to C \quad a:A}{t \cdot [a; \lambda y.y \cdot [b; -]]:C} \stackrel{(y:B \to C)^1 \quad b:B}{el-s} = f_{(1)}$$

- Simple general way to derive classical deduction rules for (new) connectives.
- One can study connectives "in isolation". (Without other connectives.)
- General Curry-Howard proofs-as-terms interpretation.
- General definitions of detour conversion and permutation conversion.
- General Normalization proof.

#### Questions?

