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Classical and Constructive Logic

Classically, the meaning of a propositional connective is fixed by its
truth table. This immediately implies

• consistency,

• a decision procedure,

• completeness (w.r.t. Boolean algebra’s).

Constructively (following the Brouwer-Heyting-Kolmogorov
interpretation), the meaning of a connective is fixed by explaining
what a proof is that involves the connective.
Basically, this explains the introduction rule(s) for each connective,
from which the elimination rules follow (Prawitz)
By analysing constructive proofs we then also get

• consistency (from proof normalization),

• a decision procedure (from the subformula property),

• completeness (w.r.t. Heyting algebra’s and Kripke models).
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This talk

• Derive natural deduction rules for a connective from its truth
table definition.
• Also works for constructive logic.
• Gives natural deduction rules for a connective “in isolation”
• Also gives (constructive) rules for connectives that haven’t

been studied so far, like if-then-else and nand.

• General definition, both the constructive and the classical
case.

• Relation to “standard” natural deduction rules and known
connectives.

• General Kripke model for the constructive connectives.
(Sound and Complete)

• Curry-Howard proofs-as-terms interpretation for derivations
and normalization of proof-reduction

• Interpreting classical proofs as terms.
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Standard form for natural deduction rules

Γ ` A1 . . . Γ ` An Γ,B1 ` D . . . Γ,Bm ` D

Γ ` D

If the conclusion of a rule is Γ ` D, then the hypotheses of the rule
can be of one of two forms:

1 Γ ` A: instead of proving D from Γ, we now need to prove A
from Γ. We call A a Lemma.

2 Γ,B ` D: we are given extra data B to prove D from Γ. We
call B a Casus.

We don’t give the Γ explicitly (it can be retrieved):

` A1 . . . ` An B1 ` D . . . Bm ` D

` D
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Some well-known constructive rules

Rules that follow this format:

` A ∨ B A ` D B ` D
∨-el

` D

` A ∧ B A ` D
∧-el

` D

` A ` B
∧-in

` A ∧ B

Rule that does not follow this format:

A ` B
→ -in

` A→ B
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Natural Deduction rules from truth tables

Let c be an n-ary connective c with truth table tc .
Each row of tc gives rise to an elimination rule or an introduction
rule for c . (We write Φ = c(A1, . . . ,An).)

A1 . . . An Φ
p1 . . . pn 0

7→
` Φ . . . ` Aj (if pj = 1) . . .Ai ` D (if pi = 0) . . .

el
` D

constructive intro

A1 . . . An Φ
q1 . . . qn 1

7→
. . . ` Aj (if qj = 1) . . .Ai ` Φ (if qi = 0) . . .

ini

` Φ

classical intro

A1 . . . An Φ
r1 . . . rn 1

7→
Φ ` D . . . ` Aj (if rj = 1) . . .Ai ` D (if ri = 0) . . .

inc

` D
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Examples

Constructive rules for ∧ (3 elim rules and one intro rule):

A B A ∧ B
0 0 0
0 1 0
1 0 0
1 1 1

` A ∧ B A ` D B ` D
∧-el00

` D

` A ∧ B A ` D ` B
∧-el01

` D

` A ∧ B ` A B ` D
∧-el10

` D

` A ` B
∧-in11

` A ∧ B

• Can be shown to be equivalent to the well-known constructive rules.

• These rules can be optimized to 3 rules.

H. Geuvers January 14, 2021 Deriving natural deduction rules from truth tables 7 / 49



Natural Deduction and Truth Tables
Proof normalization and Curry-Howard Radboud University

Examples

Rules for ¬: 1 elimination rule and 1 introduction rule.

A ¬A
0 1
1 0

Constructive:

` ¬A ` A
¬-el

` D

A ` ¬A
¬-ini

` ¬A

Classical:

` ¬A ` A
¬-el

` D

¬A ` D A ` D
¬-inc

` D
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Lemma I to simplify the rules

` A1 . . . ` An B1 ` D . . . Bm ` D C ` D

` D

` A1 . . . ` An ` C B1 ` D . . . Bm ` D

` D

is equivalent to the system with these two rules replaced by

` A1 . . . ` An B1 ` D . . . Bm ` D

` D

H. Geuvers January 14, 2021 Deriving natural deduction rules from truth tables 9 / 49



Natural Deduction and Truth Tables
Proof normalization and Curry-Howard Radboud University

Lemma II to simplify the rules

A system with a deduction rule of the form to the left is equivalent
to the system with this rule replaced by the rule on the right.

` A1 . . . ` An B ` D

` D

` A1 . . . ` An

` B
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The constructive connectives

We have already seen the ∧,¬ rules. The optimized rules for
∨,→,> and ⊥ we obtain are:

` A ∨ B A ` D B ` D
∨-el

` D

` A
∨-in1

` A ∨ B

` B
∨-in2

` A ∨ B

` A→ B ` A
→ -el

` B

` B
→ -in1

` A→ B

A ` A→ B
→ -in2

` A→ B

>-in
` >

` ⊥
⊥-el

` D
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The rules for the classical → connective

` A→ B ` A
→ -el

` B

` B
→ -in1

` A→ B

A→ B ` D A ` D
→ -inc

2
` D

Derivation of Peirce’s law:

A ` A

A ` ((A → B) → A) → A

(A → B) → A ` (A → B) → A A → B ` A → B

A → B, (A → B) → A ` A

A → B, (A → B) → A ` ((A → B) → A) → A

A → B ` ((A → B) → A) → A
→ -inc2

` ((A → B) → A) → A
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The “If Then Else” connective

Notation: A→B/C for if A thenB elseC .

p q r p→q/r
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

The optimized constructive rules are:

` A→B/C ` A
then-el

` B

` A→B/C A ` D C ` D
else-el

` D

` A ` B
then-in

` A→B/C

A ` A→B/C ` C
else-in

` A→B/C
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Some facts about constructive “If Then Else”

A→B/C is logically equivalent to (A→ B) ∧ (A ∨ C )

We have the well-known classical equivalence

if A thenB elseB ≡ B

We don’t have the other well-known classical equivalences
if (if A thenB elseC ) thenD elseE 6`

if A then (if B thenD elseE ) else (if C thenD elseE )

if A then (if B thenD elseE ) else (if C thenD elseE ) 6`
if (if A thenB elseC ) thenD elseE
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“If Then Else” +>+⊥ is functionally complete

We can define the usual constructive connectives in terms of
if-then-else, > and ⊥:

A ∨̇ B := A→A/B A ∧̇ B := A→B/A

A →̇ B := A→B/> ¬̇A := A→⊥/>

Lemma The defined connectives satisfy the original constructive
deduction rules for these same connectives.

Corollary The constructive connective if-then-else, together
with > and ⊥, is functionally complete.
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Sheffer stroke or NAND connective [I]

The truth table for nand(A,B), which we write as A ↑ B is as
follows.

A B A ↑ B
0 0 1
0 1 1
1 0 1
1 1 0

From this we derive the following optimized rules.

A ` A ↑ B
↑-inl

` A ↑ B

B ` A ↑ B
↑-inr

` A ↑ B
` A ↑ B ` A ` B

↑-el
` D
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Sheffer stroke or NAND connective [II]

The usual connectives can be defined in terms of nand.

¬̇A := A ↑ A
A ∨̇ B := (A ↑ A) ↑ (B ↑ B)

A ∧̇ B := (A ↑ B) ↑ (A ↑ B)

A →̇ B := A ↑ (B ↑ B)

This gives rise to an embedding (−)↑ of intuitionistic proposition
logic `i into the nand-logic `↑.

Proposition For A a formula in proposition logic,

`i ¬¬A ⇐⇒ `↑ (A)↑.
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Kripke semantics for the constructive rules

For each n-ary connective c , we assume a truth table
tc : {0, 1}n → {0, 1} and the defined constructive deduction rules.

Definition A Kripke model is a triple (W ,≤, at) where W is a
set of worlds, ≤ a reflexive, transitive relation on W and a function
at : W → ℘(At) satisfying w ≤ w ′ ⇒ at(w) ⊆ at(w ′).

We define the notion ϕ is true in world w (usually written w  ϕ)
by defining [[ϕ]]w ∈ {0, 1}

Definition of [[ϕ]]w ∈ {0, 1}, by induction on ϕ:

• (atom) if ϕ is atomic, [[ϕ]]w = 1 iff ϕ ∈ at(w).

• (connective) for ϕ = c(ϕ1, . . . , ϕn), [[ϕ]]w = 1 iff for each
w ′ ≥ w , tc([[ϕ1]]w ′ , . . . , [[ϕn]]w ′) = 1 where tc is the truth
table of c .

Γ |= ψ := for each Kripke model and each world w , if [[ϕ]]w = 1 for
each ϕ in Γ, then [[ψ]]w = 1.
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Kripke semantics for the constructive rules

Lemma (Soundness) If Γ ` ψ, then Γ |= ψ
Proof. Induction on the derivation of Γ ` ψ.

For completeness we need to construct a special Kripke model.

• In the literature, the completeness of Kripke semantics is
proved using prime theories.

• A theory is prime if it satisfies the disjunction property: if
Γ ` A ∨ B, then Γ ` A or Γ ` B.

• We may not have ∨ in our set of connective, and we may
have others that “behave ∨-like”’,

• (But we can generalize the disjunction property to arbitrary
n-ary constructive connectives that are “splitting”.)

• We apply a kind of Lindenbaum construction (also used by
Milne for the classical case).
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Kripke semantics for the constructive rules

Definition For ψ a formula and Γ a set of formulas, we say that
Γ is ψ-maximal if

• Γ 6` ψ and

• for every formula ϕ /∈ Γ we have: Γ, ϕ ` ψ.

NB. Given ψ and Γ such that Γ 6` ψ, we can extend Γ to a
ψ-maximal set Γ′ that contains Γ.

Simple important facts about ψ-maximal sets Γ:

1 For every ϕ, we have ϕ ∈ Γ or Γ, ϕ ` ψ.

2 For every ϕ, if Γ ` ϕ, then ϕ ∈ Γ.
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Completeness of Kripke semantics

Definition We define the Kripke model U = (W ,≤, at):

• W := {(Γ, ψ) | Γ is a ψ-maximal set}.
• (Γ, ψ) ≤ (Γ′, ψ′) := Γ ⊆ Γ′.

• at(Γ, ψ) := Γ ∩ At.

Lemma In the model U we have, for all worlds (Γ, ψ) ∈W :

ϕ ∈ Γ⇐⇒ [[ϕ]](Γ,ψ) = 1 (∀ϕ)

Proof: Induction on the structure of ϕ.

Theorem If Γ |= ψ, then Γ ` ψ.
Proof. Suppose Γ |= ψ and Γ 6` ψ. Then we can find a ψ-maximal
superset Γ′ of Γ such that Γ′ 6` ψ. In particular: ψ is not in Γ′. So
(Γ′, ψ) is a world in the Kripke model U in which each member of
Γ is true, but ψ is not. Contradiction to Γ |= ψ, so Γ ` ψ.
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Some general proof-theoretic properties

The n-ary connective c is i , j-splitting in case

tc(p1, . . . , pi−1, 0, pi+1, . . . , pj−1, 0, pj+1, . . . , pn) = 0

for all p1, . . . , pi−1, pi+1, . . . , pj−1, pj+1, . . . , pn ∈ {0, 1}.

Lemma For c an i , j-splitting connective, if ` c(A1, . . . ,An), then
` Ai or ` Aj .
For example: if ` A→B/C , then ` A or ` C . (And also: if
` A→B/C , then ` B or ` C .)

An n-ary connective c is monotonic if tc : {0, 1}n → {0, 1} is
monotonic under the ordering induced by 0 ≤ 1.

Lemma For c monotonic, the classical and constructive derivation
rules are equivalent.

Lemma For c1, c2 non-monotonic, if we take the classical rules for
c1 and the constructive rules for c2, we can derive the classical
rules for c2.
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Substituting a deduction in another

Lemma: If Γ ` A and ∆,A ` B, then Γ,∆ ` B

If Σ is a deduction of Γ ` A and Π is a deduction of ∆,A ` B,
then we have the following deduction of Γ,∆ ` B:

····
Σ

Γ ` A . . .

····
Σ

Γ ` A····
Π

∆ ` B

In Π, every application of an (axiom) rule at a leaf, deriving
∆′ ` A for some ∆′ ⊇ ∆ is replaced by a copy of a deduction Σ,
which is also a deduction of ∆′, Γ ` A.
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Detours (cuts) in constructive logic

Remember that the rules for c arise from rows in the truth table tc :

A1 . . . An c(A1, . . . ,An)
p1 . . . pn 0
q1 . . . qn 1

Definition A detour convertibility is a pattern of the following
form, where Φ = c(A1, . . . ,An).

. . .
Σj

Γ ` Aj
. . .

Σi

Γ,Ai ` Φ
. . .

in
Γ ` Φ . . .

Πk

Γ ` Ak . . .
Π`

Γ,A` ` D
. . .

el
Γ ` D

• qj = 1 for Aj and qi = 0 for Ai

• pk = 1 for Ak and p` = 0 for A`
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Eliminating a detour (detour conversion) (I)

The elimination of a detour is defined by replacing the deduction
pattern by another one. If j = ` (for some j , `, so Aj = A`), replace

. . .
Σj

Γ ` Aj
. . .

Σi

Γ,Ai ` Φ
. . .

in
Γ ` Φ . . .

Πk

Γ ` Ak . . .
Π`

Γ,A` ` D
. . .

el
Γ ` D

by

Σj

Γ ` Aj

. . .
Σj

Γ ` Aj

Π`

Γ ` D
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Eliminating a detour (detour conversion) (II)

If i = k (for some i , k, so Ai = Ak), replace

. . .

Σj

Γ ` Aj . . .

Σi

Γ,Ai ` Φ . . .
in

Γ ` Φ . . .

Πk

Γ ` Ak . . .

Π`

Γ,A` ` D . . .
el

Γ ` D

by

Πk

Γ ` Ak

. . .
Πk

Γ ` Ak

Σi

Γ ` Φ
. . .

Πk

Γ ` Ak

. . .
Π`

Γ,A` ` D
. . .

el
Γ ` D
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Observation

. . .

Σj

Γ ` Aj . . .

Σi

Γ,Ai ` Φ . . .
in

Γ ` Φ . . .

Πk

Γ ` Ak . . .

Π`

Γ,A` ` D . . .
el

Γ ` D

• There can be several “matching” (i , k) or (j , `) pairs.

• So: detour conversion (“β-rule”) is non-deterministic in
general.
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Permutation convertibility: Definition

Let c and c ′ be connectives of arity n and n′, with elimination rules
r and r ′ respectively. A permutation convertibility in a derivation is
a pattern of the following form, where Φ = c(B1, . . . ,Bn),
Ψ = c ′(A1, . . . ,An′).

` Ψ . . .

····
Σj

` Aj . . .

····
Σi

Ai ` Φ . . .
elr ′

` Φ . . .

····
Πk

` Bk . . .

····
Π`

B` ` D . . .
elr

` D

• Aj ranges over all propositions that have a 1 in the truth table
of c ′; Ai ranges over all propositions that have a 0,

• Bk ranges over all propositions that have a 1 in the truth
table of c ; B` ranges over all propositions that have a 0.
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Permutation conversion

The permutation conversion is defined by replacing the derivation
pattern on the previous slide by

` Ψ . . .

····
Σj

` Aj . . .

····
Σi

Ai ` Φ . . .

····
Πk

Ai ` Bk . . .

····
Π`

Ai ,B` ` D . . .
elr

Ai ` D
elr ′

` D

This gives rise to copying of sub-derivations: for every Ai we copy
the sub-derivations Π1, . . . ,Πn.
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Curry-Howard proofs-as-terms

We define rules for the judgment Γ ` t : A, where

• A is a formula,

• Γ is a set of declarations {x1 : A1, . . . , xm : Am}, where the Ai

are formulas and the xi are term-variables,

• t is a proof-term:

t ::= x | {t ; λx : A.t}r | t ·r [t ; λx : A.t]

where x ranges over variables and r ranges over the rules.

For a connective c ∈ C, r an introduction rule for c and r ′ an
elimination rule for c , we have

• an introduction term {t ; λx : A.t}r
• an elimination term t ·r ′ [t ; λx : A.t]
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Curry-Howard typing rules

Let Φ = c(A1, . . . ,An) and r a rule for c .

if xi : Ai ∈ Γ
Γ ` xi : Ai

. . . Γ ` pj : Aj . . . . . . Γ, yi : Ai ` qi : Φ . . .
in

Γ ` {p ; λy : A.q}r : Φ

Γ ` t : Φ . . . Γ ` pk : Ak . . . . . . Γ, y` : A` ` q` : D
el

Γ ` t ·r [p ; λy : A.q] : D

Here, p is the sequence of terms p1, . . . , pm′ for all the 1-entries in
rule r of the truth table, and λy : A.q is the sequence of terms
λy1 : A1.q1, . . . , λym : Am.qm for all the 0-entries in r .
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Reductions on terms for detours

Term reduction rules that correspond to detour conversions.

• For simplicity we write the “matching cases” as last term of
the sequence.

• For the j = ` case, that is, pj : Aj and y` : A` with Aj = A`:

{p, pj ; λx .q} · [s ; λy .r , λy`.r`] −→a r`[y` := pj ]

• For the i = k case, that is, xi : Ai and sk : Ak with Ai = Ak :

{p ; λx .q, λxi .qi} · [s, sk ; λy .r ] −→a qi [xi := sk ] · [s, sk ; λy .r ]

p, pj should be understood as a sequence p1, . . . , pj , . . . pm′ , where
the pj that matches the r` in λy .r , λy`.r` has been singled out.

NB There is always (at least one) matching case, because
intro/elim rules comes from different lines in the truth table.
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Reductions on terms for permutations

We add the following reduction rules for permutation conversions.

(t ·r [p ; λx .q]) ·r ′ [s ; λy .r ] −→b t ·r [p ; λx .(q ·r ′ [s ; λy .r ])]

Here, λx .(q · [s ; λy .r ]) should be understood as a sequence
λx1.q1, . . . , λxm.qm where each qj is replaced by qj ·r ′ [s ; λy .r ].

H. Geuvers January 14, 2021 Deriving natural deduction rules from truth tables 33 / 49



Natural Deduction and Truth Tables
Proof normalization and Curry-Howard Radboud University

Optimized reductions on optimized terms

• On optimized terms, one can also, in a canonical way, define
detour conversion −→a and permutation conversion −→b.

• Detour reduction on optimized terms translates to
(multi-step) detour reduction on the full terms.

• So, strong normalization on optimized terms follows from
strong normalization on full terms.

• Other well-known rules, like the general elimination rules
studied by Schroeder-Heister and Von Plato, can similarly be
translated to our full rules.
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Normalization

Theorem The reduction −→b is strongly normalizing

(t ·r [p ; λx .q]) ·r ′ [s ; λy .r ] −→b t ·r [p ; λx .(q ·r ′ [s ; λy .r ])]

Proof The measure | − | decreases with every reduction step.

|x | := 1

|{p ; λy .q}| := Σ|pi |+ Σ|qj |
|t · [s ; λy .u]| := |t|(2 + Σ|sk |+ Σ|u`|)
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Normalization

Theorem The reduction −→a is strongly normalizing.

{p, pj ; λx .q} · [s ; λy .r , λy`.r`] −→a r`[y` := pj ]

(for the Aj = A` case, pj : Aj and y` : A` with Aj = A`)

{p ; λx .q, λxi .qi} · [s, sk ; λy .r ] −→a qi [xi := sk ] · [s, sk ; λy .r ]

(for the Ai = Ak case, xi : Ai and sk : Ak with Ai = Ak)

Proof We adapt the saturated sets method of Tait.

Corollary the combination −→ab is weakly normalizing.
Basically: take the −→b-normal-form and then contract the
innermost −→a-redex of highest rank. (This generalizes the
Gandy-Turing WN proof for simple type theory, λ→.)

H. Geuvers January 14, 2021 Deriving natural deduction rules from truth tables 36 / 49



Natural Deduction and Truth Tables
Proof normalization and Curry-Howard Radboud University

Strong Normalization

We have obtained a proof of Strong Normalization for general
IPCC .

Rough outline of the proof (generalizing a proof of SN for IPC by
Philippe De Groote):

• Define a “double negation” translation from IPCC formulas to
λ→-types.

• Define a reduction preserving “CPS” translation from IPCC
terms to λ→-parallel.
(λ→ extended with [M1, . . . ,Mn] : A if Mi : A for 1 ≤ i ≤ n.)

• Prove SN for λ→-parallel.
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λ→-parallel

• Types: σ ::= o | (σ → σ)

• Terms: M ::= x | (MM) | (λx .M) | [M1, . . . ,Mn] (n > 1).
• Typing rules

Γ ` M : A→ B Γ ` N : A

Γ ` M N : B

Γ, x : A ` M : B

Γ ` λx .M : A→ B

(x : A) ∈ Γ

Γ ` x : A

Γ ` M1 : A . . . Γ ` Mn : A

Γ ` [M1, . . . ,Mn] : A

• Reduction rules: (λx .M)N −→β M[x := N] plus

[M1, . . . ,Mn]N −→β [M1 N, . . . ,Mn N]

SN can be proved by adapting the well-known Tait proof.
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Translating formulas to types (outline)

Abbreviate ¬A := A→ o.

• For a proposition letter, Â := ¬¬A.

• For Φ = c(A1, . . . ,An) with elimination rules r1, . . . , rt

Φ̂ := ¬(E1 → · · · → Et → o),

where

Es := Âk1 → . . .→ Âkm → ¬Âl1 → . . .→ ¬Âln−m → o

with the Ak the 1-entries and the Al are the 0-entries in the
truth table.

For example

Â ∧ B = ¬(¬¬Â→ ¬¬B̂ → o)

Â ∨ B = ¬((¬Â→ ¬B̂ → o)→ o)
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Translating proof-terms to λ→-parallel terms (outline)

We have a translation M̂ and a second translation
̂̂
M. (This is a

generalization of the CPS translation M of Plotkin, that De Groote
also uses.)
We can prove

• If M −→b N, then
̂̂
M =

̂̂
N

• If
̂̂
M ⊂ K (

̂̂
M is a subterm of K ), then

M 7→ ̂̂
M ⊂ K

?

a β

?

+

N 7→ ̂̂
N ⊂ ∃K ′

From this we derive Strong Normalization.
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Consequences of Normalization

The set of terms in normal form of IPCC , NF is characterized by
the following inductive definition.

• x ∈ NF for every variable x ,

• {p ; λy .q} ∈ NF if all pi and qj are in NF,

• x · [p ; λy .q] ∈ NF if all pi and qj are in NF and x is a variable.

As corollaries of Normalization we have, for an arbitrary set of
connectives:

• subformula property

• consistency of the logic

• decidability of the logic
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Classical logic

For classical logic, we have:

A1 . . . An Φ
p1 . . . pn 0

7→
` Φ . . . ` Aj (if pj = 1) . . .Ai ` D (if pi = 0) . . .

el
` D

classical intro

A1 . . . An Φ
r1 . . . rn 1

7→
Φ ` D . . . ` Aj (if rj = 1) . . .Ai ` D (if ri = 0) . . .

inc

` D

• If pj = 1 (or rj = 1) in tc , then Aj occurs as Lemma in the rule

• If pj = 0 (or rj = 0) tc , then Ai occurs as Casus in the rule

We call ` Φ (resp. Φ ` D) the major premise and the other
hypotheses of the rule we call the minor premises.
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Proof terms for classical logic

t ::= x | (λy : A.t) ?r {t ; λx : A.t} | t ·r [t ; λx : A.t]

where x ranges over variables and r ranges over the rules of all the
connectives.
The terms are typed using the following derivation rules.

if xi : Ai ∈ Γ
Γ ` xi : Ai

Γ, z : Φ ` t : D . . . Γ ` pi : Ai . . . . . . Γ, yj : Aj ` qj : D . . .
in

Γ ` (λz : Φ.t) ?r {p ; λy : A.q} : D

Γ ` t : Φ . . . Γ ` pk : Ak . . . . . . Γ, y` : A` ` q` : D
el

Γ ` t ·r [p ; λy : A.q] : D
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Reduction for proof terms in classical logic

• First perform permutation reductions.

• Then we perform detour reductions.

This is similar to the constructive case, except for now

• a term is in permutation normal form if all lemmas are
variables,

• a detour is an elimination of Φ followed by an introduction of
Φ.

NB: in constructive logic, a “detour” is an introduction directly
followed by an elimination. Here it is the other way around, and
the introduction need not follow the elimination directly.

This is the abstract syntax N for permutation normal forms:

N ::= x | (λy : A.N) ? {z ; λx : A.N} | y · [z ; λx : A.N],

where x , y , z range over variables.
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Detours for proof terms in classical logic

A detour is a pattern of the following shape

(λx : Φ. . . . (x · [v ; λw : A.s]) . . .) ? {z ; λy : A.q}

that is, an elimination of Φ = c(A1, . . . ,An) followed by an
introduction of Φ, with an arbitrary number of steps in between.

For terms in permutation normal form, detours can be eliminated,
obtaining a term in normal form which satisfies the sub-formula
property.

Notes to the pattern of a detour:

• the indicated occurrence need not be the only occurrence of x

• variable x may not occur at all; that is the simplest situation.
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Eliminating detours

Eliminating detours is done by the following reduction steps:

• (λx : Φ. . . . (x · [v ; λw : A.s]) . . .) ? {z ; λy : A.q} −→a

(λx : Φ. . . . (s`[w` := zi ]) . . .) ? {z ; λy : A.q}
if i = ` (Ai = A`) is a “matching case” for the subformulas of Φ.

• (λx : Φ. . . . (x · [v ; λw : A.s]) . . .) ? {z ; λy : A.q} −→a

(λx : Φ. . . . (qj [yj := vk ]) . . .) ? {z ; λy : A.q}
if j = k (Aj = Ak) is a “matching case” for the subformulas of Φ.

• (λx : Φ.t) ? {z ; λy : A.q} −→a t if x /∈ FV(t).

Tonny Hurkens has given a proof that this normalizes
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Conclusions

• Simple general way to derive constructive and classical
deduction rules for (new) connectives.

• Study connectives “in isolation”. (Without other connectives.)

• Generic Kripke semantics for constructive logic

• General definitions of detour conversion and permutation
conversion.

• General Curry-Howard proofs-as-terms interpretation.

• General Strong Normalization proof.
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Future work and Related

• Meaning of the new connectives as inductive data types.

• Study conditions for the set of rules to be Church-Rosser.

• Study the computational meaning of classical proof terms.

• Relation with other well-known term calculi for classical logic:
subtraction logic (Crolard), λµ (Parigot), λ̄µµ̃ (Curien,
Herbelin).

Related work:

• Dyckhoff; Milne; von Plato and Negri; Schroeder-Heister;
Joachimski and Matthes; Baaz, Fermüller and Zach; Abel; . . .

• “Harmony” in logic (following Prawitz)
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Questions?
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