
Semantiek en logica 1

onderdeel Termherschrijven

Dinsdag 8 april, college:
Termherschrijven (TRS)
Leertaak 5: Reductie in TRS
Donderdag 10 april: Responsiecollege
Dinsdag 15 april, college:
Normalisatie in TRS
Leertaak 6:
Normalisatie in TRS
Donderdag 17 april: Responsiecollege
Dinsdag 22 april, college:
Confluentie in TRS
Leertaak 7:
Confluentie in TRS
Donderdag 24 april: Responsiecollege

2

Equational reasoning

We will give a minimal description of natural
numbers in which 2 + 2 = 4 makes sense and
can be proved automatically

Natural numbers:

0, s(0), s(s(0)), s(s(s(0))), . . .

These are the closed terms composed from the
constant 0 and the unary symbol s

Here a term is called closed if it does not
contain variables

We want to show that

s(s(0)) + s(s(0)) = s(s(s(s(0))))

Here + is a binary operator written in infix
notation

3

This claim only holds if we have some basic
rules for +:

+ applied to natural numbers should
yield a natural number after appli-
cation of these basic rules

Here natural number numbers are defined to
be closed terms composed from the constant
0 and the unary symbol s

Hence we need rules by which every closed
term containing the symbol + can be rewrit-
ten to a closed term not containing +

One way to do so is:

0 + x = x

s(x) + y = s(x + y)

4

What is the meaning of such rules?

• For variables (here: x, y) arbitrary terms
may be substituted

• These rules may be applied on any sub-
term of a term that has to be rewritten

In case the rules are only allowed to be applied
from left to right we write an arrow→ instead
of =

The rules are called rewrite rules

A set of such rewrite rules is called a

term rewrite system (TRS)

5

In order to define this more precisely, first we
define terms and substitution

A set Σ of function symbols is called a signa-
ture

Function symbols symbols have an arity =
0, 1, 2, 3, . . ., indicating the number of argu-
ments it expects

A function symbol of arity 0 is also called a
constant

In our example we have

• the function symbol s of arity 1

• the function symbol + of arity 2

• the constant 0

6

We inductively define:

A term is

• a variable, or

• a function symbol of arity n applied on
n terms

The default notation is prefix, i.e., the sym-
bol f applied on terms t1, . . . , tn is written as
f(t1, . . . , tn)

For some symbols (in our case +) an infix
notation is more standard, however, this re-
quires some extra rules of how to deal with
parentheses and priorities

For a constant c we also write c for the corre-
sponding term rather than c()

For a signature Σ and a set X of variables
the corresponding set of terms is denoted by
T (Σ,X)

7

A substitution is a map from variables to
terms

A substitution σ can be extended to arbitrary
terms by inductively defining:

xσ = σ(x)

for every variable x and

f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ)

for every function symbol f

So tσ is obtained from t by replacing every
variable x in t by σ(x)

For instance, if σ(x) = y and σ(y) = g(x)
then

h(f(x), y)σ = h(f(y), g(x))

8

Definition:

A term rewrite system (TRS) R over a sig-
nature Σ is a subset of T (Σ,X)× T (Σ,X)

An element (`, r) ∈ R is called a rule and is
usually written as `→ r instead of (`, r)

` is called the left hand side and r is called
the right hand side of the rule

The rewrite relation →R is defined to be the
smallest relation →R ⊆ T (Σ,X) × T (Σ,X)
satisfying:

• `σ →R rσ for every ` → r in R and
every substitution σ

• if tj →R uj and ti = ui for every i 6= j,
then f(t1, . . . , tn)→R f(u1, . . . , un)

9

This last property causes that application of
rules is allowed on subterms

For instance, if the TRS R consists of the rules

+(0, x)→ x, +(s(x), y)→ s(+(x, y))

(the same as before, now in prefix nota-
tion)
then indeed 2 + 2 = 4 holds:

+(s(s(0)), s(s(0))) →R s(+(s(0), s(s(0)))︸ ︷︷ ︸)
→R s(s(+(0, s(s(0)))︸ ︷︷ ︸))
→R s(s(s(s(0))))

10

A term t is called a normal form if no u
exists satisfying t→R u

Computation
=

rewrite to normal form
=

apply rewriting as long as possible

So in our example rewriting to normal form of
the term 2+2 represented by +(s(s(0)), s(s(0)))
yields the term 4 represented by s(s(s(s(0))))

A term t is called a normal form of a term
u if t is a normal form and u rewrites to t in
zero or more steps.

11

A rewriting sequence is also called a reduc-
tion; it can be infinite, unfinished, or end in
a normal form

Rewriting to normal form is the basic formal-
ism in several kinds of computation

In particular, it is the underlying formalism
for both semantics and implementation of func-
tional programming, in which the function
definitions are interpreted as rewrite rules

12

Example

rev(nil) = nil
rev(a : x) = conc(rev(x),a : nil)
conc(nil,x) = x
conc(a : x,y) = a : conc(x, y)

Here a, x, y are variables, and = corresponds
to → in rewrite rules

Then we have a reduction to normal form
rev(1:2:nil) →
conc(rev(2:nil),1:nil) →
conc(conc(rev(nil),2:nil),1:nil) →
conc(conc(nil,2:nil),1:nil) →
conc(2:nil,1:nil) →
2:conc(nil,1:nil) →
2:1:nil

13

Without extra requirements a term can have
no normal form, or more than one normal
form

For instance, with respect to f(x)→ f(x) the
term f(a) does not have a normal form

For instance, with respect to f(f(x))→ a the
term f(f(f(a))) has two normal forms a and
f(a)

Now we investigate some nice properties forc-
ing that every term has exactly one normal
form

A TRS is called weakly normalizing (WN)
if every term has at least one normal form

14

Nice properties:

• R is terminating (= strongly normal-
izing, SN):

no infinite sequence of terms
t1, t2, t3, . . . exists such that ti →R

ti+1 for all i

• R is confluent (= Church-Rosser, CR):

if t →∗
R u and t →∗

R v then a
term w exists satisfying u→∗

R

w and v →∗
R w

• R is locally confluent (= weak Church-
Rosser, WCR):

if t →R u and t →R v then a
term w exists satisfying u→∗

R

w and v →∗
R w

Here →∗
R is the reflexive transitive closure of

→R, i.e., t→∗
R u if and only if t can be rewrit-

ten to u in zero or more steps

15

Property
If a TRS is terminating, then every term

has at least one normal form

Proof: rewriting as long as possible does not
go on forever due to termination

So it ends in a normal form

The converse is not true: the TRS over the
two constants a, b consisting of the two rules
a→ a and a→ b is weakly normalizing since
the two terms a and b both have b as a normal
form, but it is not terminating due to

a→ a→ a→ a→ · · ·

16

Property
If a TRS is confluent, then every term has

at most one normal form

Proof: Assume t has two normal forms u, u′

Then by confluence there is a v such that
u→∗

R v and u′ →∗
R v

Since u, u′ are normal forms we have u =
v = u′

17

Termination is undecidable, i.e., there is no
algorithm that can decide for every finite TRS
whether it is terminating

However, in many special cases termination of
a TRS can be proved

General technique:

Find a weight function W from
terms to natural numbers in such
a way that W (u) > W (v) for all
terms u, v satisfying u→R v

If such a function W exists then R is terminat-
ing since an infinite rewriting sequence would

give rise to an infinite decreasing sequence of
natural numbers which does not exist

18

In our example

+(0, x)→ x,

+(s(x), y)→ s(+(x, y))

we find such a weight function W by defining
inductively

W (0) = 1
W (s(t)) = W (t) + 1
W (+(t, u)) = 2W (t) + W (u)

19

The general idea of weight functions is too
general:

It allows arbitrary definitions of weight func-
tions, and we have to prove that W (t) > W (u)
for all rewrite steps t →R u, while typically
there are infinitely many of them

Now we work out a special case of this idea of
weight functions in such a way that for finding
a termination proof we only have to

• choose interpretations for the (finitely
many) operation symbols rather than for
all terms, and

• check W (`) > W (r) for the (finitely many)
rules ` → r rather than for all rewrite
steps

20

For every symbol f of arity n choose a mono-
tonic function [f] : Nn → N

Here monotonic means:

if for all ai, bi ∈ N for i = 1, . . . , n
with ai > bi for some i and aj = bj

for all j 6= i then

[f](a1, . . . , an) > [f](b1, . . . , bn)

21

Examples

λx · x
λx · x + 1
λx · 2x
λx, y · x + y
λx, y · x + y + 1
λx, y · 2x + y

are monotonic

λx · 2
λx, y · x

are not monotonic

22

Let X be the set of variables

For a map α : X → N the weight function
[·, α] : T → N is defined inductively by

[x, α] = α(x),

[f(t1, . . . , tn), α] = [f]([t1, α], . . . , [tn, α])

Theorem

Let R be a TRS and let [f] be chosen such
that

• [f] is monotonic for every symbol f , and

• [`, α] > [r, α] for every α : X → N and
every rule `→ r in R

Then R is terminating

23

Proof sketch:

Assume R admits an infinite reduction

t1 →R t2 →R t3 →R · · ·

Using monotonicity one proves that if t→R u
and α : X → N then [t, α] > [u, α]

Choose α : X → N arbitrary, then we have

[t1, α] > [t2, α] > [t3, α] > · · ·

being an infinite decreasing sequence of natu-
ral numbers, contradiction

(end of proof sketch)

Often the interpretations [f] are polynomi-
als, therefore the full interpretation is called
a polynomial interpretation

24

Example

For our TRS R consisting of the rules

+(0, x)→ x, +(s(x), y)→ s(+(x, y))

we choose monotonic functions

[0] = 1, [s](x) = x + 1,

[+](x, y) = 2x + y

Now indeed for every α : X → N we have

[+(0, x), α] = 2 + α(x) > α(x) = [x, α]

and

[+(s(x), y), α] = 2(α(x) + 1) + α(y) >

(2α(x) + α(y)) + 1 = [s(+(x, y)), α]

proving termination

25

Example

For the TRS R consisting of the single rule

f(g(x))→ g(g(f(x)))

we choose monotonic functions

[f](x) = 3x, [g](x) = x + 1

Now indeed for every α : X → N we have

[f(g(x)), α] = 3(α(x) + 1) >

3α(x) + 1 + 1 = [g(g(f(x))), α]

proving termination

26

Example

The single rule f(x) → g(f(x)) is not termi-
nating, but by choosing

[f](x) = x + 1, [g](x) = 0

for every α : X → N we have

[f(x), α] = α(x) + 1 > 0 = [g(f(x)), α]

Where is the error?

27

[g] is not monotonic

So monotonicity is essential

Development of techniques for proving ter-
mination is a challenging and lively research
topic

Every year there is a competition for tools
automatically proving termination

28

Recall:

• R is confluent (= Church-Rosser, CR):

if t →∗
R u and t →∗

R v then a
term w exists satisfying u→∗

R

w and v →∗
R w

• R is locally confluent (= weak Church-
Rosser, WCR):

if t →R u and t →R v then a
term w exists satisfying u→∗

R

w and v →∗
R w

29

Confluence is strictly stronger than local con-
fluence:

a→ b

b→ a

a→ c

b→ d

is locally confluent:

if t→R u and t→R v then either

• t = a, then choose w = c, or

• t = b, then choose w = d

In both cases we conclude u→∗
R w

and v →∗
R w

but not confluent:

for t = a, u = c, v = d we have
t→∗

R u and t→∗
R v, but no w ex-

ists satisfying u →∗
R w and v →∗

R

w

30

Newman’s lemma (1942):

For terminating TRSs the properties conflu-
ence and local confluence are equivalent

For the proof of Newman’s lemma we will use
the principle of well-founded induction

Note that SN(→), CR(→) and WCR(→) all
can be defined for arbitrary binary relations

→, in which general setting we will prove New-
man’s lemma

So SN(→) simply means the non-existence of
an infinite sequence t1 → t2 → t3 → · · ·

We write →+ for the transitive closure of →:
one or more steps

31

Principle of well-founded induction

If SN(→) and ∀t(∀u(t→+ u⇒ P (u))︸ ︷︷ ︸
Induction Hypothesis

⇒ P (t))

Then P (t) holds for all t

(think of t→+ u as t > u, then this coincides
with well-known induction)

Proof of this principle

Assume there exists t such that ¬P (t)

Then the induction hypothesis does not hold
for this t, so ¬∀u(t →+ u ⇒ P (u)), yielding
u such that t→+ u and ¬P (u)

Repeat the argument for u, yielding a v, and
so on, so yielding an infinite sequence

t→+ u→+ v →+ · · ·

contradicting SN(→) (End of proof)

32

Proof of Newman’s Lemma

Assume SN(→) and WCR(→), we have to
prove CR(→)

So assume t→∗ u and t→∗ v; we have to find
w such that u→∗ w and v →∗ w

We apply the principle of well-founded induc-
tion

If t = u we may choose w = v

if t = v we may choose w = u

In the remaining case we have t →+ u and
t→+ v

Write t→ u1 →∗ u and t→ v1 →∗ v

33

Using WCR there exists w1 such that u1 →∗

w1 and v1 →∗ w1

Using the induction hypothesis on u1 there
exists w2 such that w1 →∗ w2 and u→∗ w2

Now we have v1 →∗ w2 and v1 →∗ v; using
the induction hypothesis on v1 there exists w
such that w2 →∗ w and v →∗ w

t → u1 →∗ u
↓ WCR ↓∗ IH ↓∗
v1 →∗ w1 →∗ w2

↓∗ IH ↓∗
v →∗ w

Since u →∗ w2 we have u →∗ w, and we are
done

(End of proof)

34

Both confluence and local confluence are un-
decidable properties

However, for terminating TRSs there is a sim-
ple decision procedure for local confluence,
and hence for confluence too

Idea:

analyze overlapping patterns in left
hand sides of the rules, yielding
critical pairs

In our example there is no overlap, hence our
example is locally confluent

Since we observed it is terminating, by New-
man’s lemma it is confluent

35

Definition of critical pairs

Let `1 → r1 and `2 → r2 be two (possibly
equal) rewrite rules

Rename variables such that `1, `2 have no vari-
ables in common

Let t be a subterm of `2, possibly equal to `2;
t is not a variable

Assume t, `1 unify, i.e., there is σ such that
tσ = `1σ

Now `2σ can be rewritten in two ways:

• to r2σ, and

• to a term u obtained by replacing its
subterm tσ = `1σ to r1σ

In the above situation the pair [u, r2σ] is called
a critical pair

The substitution σ can be found in a system-
atic way if it exists; the result is called most
general unifier (mgu)

36

Example

Assume we have rules for arithmetic including

−(x, x) → 0
−(s(x), y) → s(−(x, y))

Then −(s(x), s(x)) can be rewritten in two
ways:

• to 0 by the first rule

• to s(−(x, s(x))) by the second rule

Now [0, s(−(x, s(x)))] is a critical pair

More precisely, in the above notation we choose

• `1 → r1 to be the rule −(z, z)→ 0

• `2 → r2 to be the rule −(s(x), y) →
s(−(x, y))

• t = `2 = −(s(x), y)

Indeed t, `1 unify, with mgu σ:

σ(x) = x, σ(y) = σ(z) = s(x)

37

Example

Let R consist of the single rule

f(f(x))→ g(x)

By choosing

• `1 → r1 to be the rule f(f(x))→ g(x)

• `2 → r2 to be the rule f(f(y))→ g(y)

• t = f(y)

we see that t, `1 unify, with mgu σ:

σ(x) = x, σ(y) = f(x)

yielding the critical pair [f(g(x)), g(f(x))]

A critical pair [t, u] is said to converge if
there is a term v such that t→∗

R v and u→∗
R v

38

Theorem

A TRS R is locally confluent if and only if all
critical pairs converge

Example

The single rewrite rule f(f(x))→ g(x) is not
locally confluent, so neither confluent, since
for its critical pair [f(g(x)), g(f(x))] no term
v exists such that

f(g(x))→∗
R v and g(f(x))→∗

R v

This is immediate from the observation that
both f(g(x)) and g(f(x)) are normal forms

39

For a term t and a TRS R define

S(t) = {v | t→∗
R v}

If R is finite and terminating then S(t) is finite
and computable

Using the theorem, for a finite terminating
TRS R indeed we have an algorithm to decide
whether WCR(R) holds:

• Compute all critical pairs [t, u]

They are found by unification of left hand
sides with subterms of left hand sides:
there are finitely many of them

• For all critical pairs [t, u] compute

S(t) ∩ S(u)

• If one of these sets is empty then WCR(R)
does not hold

• If all of these sets are non-empty then
WCR(R) holds

40

A TRS is said to have no overlap if there
are only trivial critical pairs, i.e., the critical
pairs obtained by unifying a left hand side
with itself

A trivial critical pair always converges since
it is of the shape [t, t]

As a consequence, every TRS having no over-
lap is locally confluent

41

It is not the case that every TRS having no
overlap is confluent:

d(x, x) → b
c(x) → d(x, c(x))

a → c(a)

has no overlap but is not confluent:

c(a)→R d(a, c(a))→R d(c(a), c(a))→R b

c(a)→R c(c(a))→+
R c(b)

while [b, c(b)] does not converge

42

Write ↔∗
R for the reflexive symmetric tran-

sitive closure of →R, i.e., t↔∗
R u holds if and

only if terms t1, . . . , tn exist for n ≥ 1 such
that

• t1 = t

• tn = u

• For every i = 1, . . . , n − 1 either ti →R

ti+1 or ti+1 →R ti holds

A general question is: given R, t, u, does t↔∗
R

u hold?

This is called the word problem

In general the word problem is undecidable

However, in case R is terminating and conflu-
ent the word problem is decidable and admits
a simple algorithm

43

A terminating and confluent TRS is called
complete

Now we give a decision procedure for the word
problem for complete TRSs

Rewriting a term t in a terminating TRS as
long as possible will always end in a normal
form; the result is called a normal form of t

Theorem

If R is a complete TRS and t′, u′ are normal
forms of t, u, then t↔∗

R u if and only if t′ = u′

44

For the proof we need a lemma that is easily
proved by induction on the length of the path
corresponding to t↔∗

R u:

Lemma:

If R is confluent and t↔∗
R u then

a term v exists such that t →∗
R v

and u→∗
R v

Proof of the theorem:

If t′ = u′ then t →∗
R t′ = u′ ←∗

R u, hence
t↔∗

R u

Conversely assume t↔∗
R u

Then t′ ←∗
R t↔∗

R u→∗
R u′, hence t′ ↔∗

R u′

According the lemma a term v exists such that
t′ →∗

R v and u′ →∗
R v

Since t′, u′ are normal forms we have
t′ = v = u′

(End of proof)

45

The relation ↔∗
R is an equivalence relation,

and in a complete TRS the normal form is
a unique representation for the corresponding
equivalence class

According to the theorem there is a very sim-
ple decision procedure for the word problem
for complete TRSs:

In order to decide whether t↔∗
R u, rewrite

• t to a normal form t′, en

• u to a normal form u′,

Then t↔∗
R u if and only if t′ = u′

46

Example:

R consists of the rule s(s(s(x)))→ x

Does s17(0)↔∗
R s10(0) hold?

We can establish fully automatically that this
is not:

• check that R is terminating

• check that R is locally confluent

• compute the normal form s(s(0)) of s17(0)

• compute the normal form s(0) of s10(0)

• these are different, hence the answer is
No

47

Often a TRS R is not complete, but a com-
plete TRS R′ satisfying

↔∗
R′ = ↔∗

R

can be found in a systematic way

Finding such a complete TRS is called

(Knuth-Bendix) completion

The new complete TRS can be used for the
word problem and unique representation of
the original TRS

Often the original TRS is only a set of equa-
tions

48

Idea of Knuth-Bendix completion

Fix a well-founded order > on terms, i.e.,
SN(>), that has some closedness properties:

• if t > u then tσ > uσ for every substi-
tution σ

• if t > u then f(. . . , t, . . .) > f(. . . , u, . . .)
for every symbol f and every position
for t

Such an order is called a reduction order,
and has the property:

If ` > r for every rule `→ r in R,
then SN(R)

A typical example of a reduction order is im-
plied by a monotonic interpretation:

t > u ⇐⇒ ∀α : X → N : [t, α] > [u, α]

49

Starting with a set E of equations and an
empty set R of rewrite rules, repeat the fol-
lowing until E is empty:

Remove an equation t = u from E, and

• add t→ u to R if t > u

• add u→ t to R if u > t

• give up otherwise

After adding any new rule ` → r to R com-
pute all critical pairs between this new rule
and existing rules of R, or between the new
rule and itself

For every such critical pair [t, u]

• R-rewrite t to normal form t′

• R-rewrite u to normal form u′

• if t′ 6= u′, then add t′ = u′ as an equation
to the set E

50

What can happen in this Knuth-Bendix pro-
cedure?

• it fails due to an equation t = u in E for
which neither t > u nor u > t holds

• it fails since the procedure goes on for-
ever: E gets larger and is never empty

• it ends with E being empty

In the last case we really have success: then

• R is terminating since it only contains
rule `→ r satisfying ` > r

• R is locally confluent since all critical
pairs converge, so R is complete

• Convertibility ↔∗
R of the resulting R is

equivalent to convertibility of the origi-
nal E since in the whole procedure↔∗

R∪E

remains invariant

51

Example:

Let E consist of the single equation

f(f(x)) = g(x)

Choose the order defined by the monotonic
interpretation [f](x) = 2x + 1, [g](x) = x + 1

Since

[f(f(x)), α] = 4α(x) + 3 >

α(x) + 1 = [g(x), α]

we add the rule f(f(x))→ g(x) to the empty
TRS R

Now the critical pair [f(g(x)), g(f(x))] gives
rise to the new equation f(g(x)) = g(f(x)) in
E

52

Since

[f(g(x)), α] = 2α(x) + 3 >

2α(x) + 2 = [g(f(x)), α]

we add the rule f(g(x))→ g(f(x)) to the TRS
R

Together with the older rule f(f(x)) → g(x)
we get the critical pair [f(g(f(x))), g(g(x))]

Since g(g(x)) is a normal form and

f(g(f(x)))→R g(f(f(x)))→R g(g(x))

no new equation is added to E, and E is
empty

So we end up in the complete TRS R consist-
ing of the two rules

f(f(x))→ g(x), f(g(x))→ g(f(x))

having the same convertibility relation as the
original equation f(f(x)) = g(x)

53

