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Abstract. We present two results which complete our Peircean semiotic
model of signs introduced in [10]. The first result is concerned with the
potential of our model for the representation of knowledge. The second
one consists of a formal proof about the model’s complexity.

1 Introduction

In this paper we argue that Peirce’s pragmatic philosophy ([8]) can be effectively
used for knowledge representation. Because knowledge emerges from a cognitive
process, a Peircean approach must respect the properties of human cognition.
In as much as knowledge arises via the mediation of signs, such a model must
be based on a semiotic theory.

Earlier we introduced such a cognitively based semiotic model for Boolean
logic ([3]), language, in particular, for syntax and morphology ([10]), syllogistic
logic ([11]), and most recently, also for semantics ([4]). The purpose of this paper
is twofold. First, we show by example that our model can be adequately used for
the specification of any problem which appears as a phenomenon (i.e. which is
observable). Second, we make an attempt to formally prove that the complexity
of such a specification can be linear.

An example for a problem which is a phenomenon, is natural language. We
experience language, hence it must be a phenomenon, and we are capable of
recognizing its meaningful units, therefore it must appear as a problem. This
also illustrates that, in our conception, a problem is equivalent to the cognitive
process of perception of a phenomenon.

Language is strongly related to knowledge. Some philosophers have even
suggested that “it is learning language that makes a mind systematic” ([5]).
Perhaps we do not falsely interpret their idea by assuming that the representation
of language can be isomorphic to the representation of knowledge in general. If,
as we argue, language can be linearly complex, the conclusion may be drawn
that knowledge representation might have the same complexity, as well.

In complexity theory linearity is equivalent to real-time complexity ([7]).
Because signs are inherently related to a contrast which, according to our model,
can be observed as a change in the ‘real’ world, the results of this paper imply
that the well-known ‘frame problem’ of cognition ([9]), which is traditionally
considered exponential, might have a simple solution as well.



Peirce’s semiotic theory entails that, ontologically, everything must be a sign.
Apart from the possible implications, also including the philosophical one that
we, human, must be a sign as well, the above conclusion has also practical
consequences. If, as Peirce maintains, there can be distinguished in the ‘real’
world between nine kinds of signs ([2]), then such signs or aspects must be
present in any phenomenon also including cognition which is a phenomenon as
well. This means that any observable problem could be specified in terms of
Peirce’s signs. The question is, precisely how those signs are called in a given
problem.

Peirce’s classification of signs is depicted in fig. 1 (the meaning of the hori-
zontal lines and the labels on the right-hand side will be explained later). The
different types of signs are defined by means of a set of aspects. A brief charac-
terization of such aspects is given in fig. 2.
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Fig. 1. Peirce’s classification of signs
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Fig. 2. The aspects of Peirce’s signs

2 The cognitive model of signs

In our model ([3], [10]) we assume that signs emerge from the sensation of the
physical input. Such stimuli are sampled by the brain in percepts typically due
to a change in the input ([6]). A percept may also contain qualities from the
memory (how sensory and memory qualities can be merged is described in [4]).

Because percepts arise by virtue of a change in the input, subsequent percepts
must be different from one another. By comparing the previous percept with



the current one the brain can distinguish between two sorts of input qualities:
one, which was there and remained there, which we will call a continuant ; and
another, which was not there, but is there now (or vice versa), which we will call
an occurrent. The collections of continuants and occurrents which are inherently
related to each other form the basis for our perception of a phenomenon as
a sign. By means of selective attention, the qualities of these collections are
further classified as observed and complementary. We will collectively refer to
the perceived qualities as the input. We will assume that these qualities are
the elementary signs we observe: qualities which are signs. Peirce called them a
qualisign ([8]2.244).

2.1 The generation of complex signs

In this section we briefly summarize the stages of sign generation ([3]). When it
is clear from the context, we will uniformly refer to a sign class and an element of
it. For example, a reference to an icon may denote an icon sign, or the icon class
itself. By virtue of the isomorphism between the classification of the different sign
phenomena ([10]), we will denote a sign by the corresponding Boolean expression.
The classification of Boolean logical signs is displayed in fig. 3.
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Fig. 3. The classification of Boolean signs

The source of sign generation is the set of qualisigns. Qualisigns are special
signs for which we have no denotation except on the level of description. We will
refer to them by the logical expressions A, B, ¬A, ¬B (0 and 1, respectively,
represent the absence and presence of input). The process of sign generation is
initialized by a sorting representation of the input qualisigns (which are quali-
ties). This yields two different views of the input: the listing of the qualities as
the parts of the observation, and the simultaneous occurrence of those parts, as
an event. These signs are, respectively, the icon (A+B) and the sinsign1 (A∗B).
The remaining signs are generated via sign interactions between adjacent signs,
in subsequent stages. In fig. 1, the adjacent signs are connected by horizontal
lines; the stages are indicated by labels on the right-hand side.

1 “The syllable sin is taken as meaning ‘being only once’, as in single” ([8]2.245).



In the first stage (abstraction), the interaction of the icon and sinsign is inter-
preted as a rheme2, index and legisign3. The rheme signs (A∗¬B, ¬A∗B) refer
to the abstractions of the individually observed input collections. The legisign
(A∗¬B+¬A∗B) signifies the compatibility of these abstractions. The index signs
(¬A+¬B, ¬A∗¬B) represent the complementary qualities as a phenomenon
(context) in two different ways. Via the DeMorgan rules (not displayed), the
index signifies the relation between the observed and complementary phenom-
ena.

The second stage (complementation) is concerned with the representation of
the actual subject and predicate of the observation. These signs are generated
from the abstract concepts of the rheme and legisign via complementation, by
means of the index. The resulting signs are the dicent4 (A+¬B, ¬A+B) and the
symbol5 (A∗B+¬A∗¬B).

Finally, in the third stage (predication), the subject and predicate of the
observation are merged and their interaction represented as a proposition, which
is an argument sign (A is B).

2.2 A Peircean model of language

Language consists of signs which are symbols. A language phenomenon, for ex-
ample, a sentence appears as a sequence of words. In [10] we argue that a Peircean
model of syntactic signs can be derived from a sequential version of the sign gen-
eration process described above. The interaction between syntactic signs is called
a binding. By virtue of the sequential nature of syntactic sign generation, there
may exist degenerate cases of a binding which are accumulation and coercion.
In an accumulation, an existing sign is combined with another sign of the same
class. In a coercion, a new sign is generated for the denotation of an existing sign
(which is said ‘coerced’). Coercion applies if the signs, which are to interact, are
incapable for accumulation or binding.

Syntactic sign interactions are characterized by the relational need of the in-
teracting symbols (which are called the constituents of the interaction; in the case
of a coercion we refer by the constituent to the sign triggering the interaction.
The relational need of a sign is a finite set of qualities; such a set is either lexi-
cally defined, or computed from the relational needs of the constituent symbols
of a binding. We distinguish between three types of syntactic relational qualities:
active(a), passive(p) and neutral(n). It is assumed that a binding resolves, and
an accumulation merges a pair of relational qualities, whereas a coercion inherits
the need of the sign coerced.

For example, a verb can be characterized by the number and type of its
complements, a noun by the properties that allow for it to become a verb com-
plement. The interaction of a verb and a noun can be represented as a syntactic
2 Greek for ‘word’.
3 Latin for ‘law’ (gen.).
4 Latin for ‘speak’ or ‘say’.
5 Latin for ‘put together’.



sign, the relational need of which is defined as a combination of the relational
needs of the verb and the noun from which the relational qualities which are
satisfied, are removed.

Finally we mention that our model of language allows for a contiguous seg-
ment of input symbols to be analyzed recursively as a nested sign ([10]). When
such a segment is recognized as a single sign, its meaning relative to the input
as a whole is represented, degenerately.

3 A Peircean specification of concepts

Having recapitulated our theory, we are now ready to illustrate its application
for the specification of a sample problem which is the phenomenon of selling
a bike. We will argue that the meaningful units of this problem can be found
by recognizing the different aspects that can be distinguished in a ‘real’ world
phenomenon. In the end, we will have a set of signs which will constitute our
specification of the given problem. Because such meaningful units, or concepts,
arise from qualities that are perceived, our Peircean approach to specification
can be said a first step towards a theory of real concept analysis.

Selling a bike is a process. We assume that in the beginning of this process
the purchaser has a general idea (knowledge) about the kind of bike (s)he wishes
to buy. This idea, then, is confronted with the ‘real’ assortment of bicycles that
can be bought. As a result, the purchaser comes to a decision and buys some
product. We will assume that our sample process takes place in a bike shop.
That such a context contains a diversity of information, is illustrated by fig. 4.

Our Price $...

Adjustment
Free
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Fig. 4. Illustration for the phenomenon of selling a bike

Earlier we mentioned that a percept may contain memory qualities (which
are thought signs). The hidden agenda of this paper is an attempt to demon-
strate that our cognitive approach to signs equally applies to the qualities of
the physical stimulus, as well as, to those of the abstract concepts of the mind.
We will tacitly assume the existence of a uniform representation for signs, also
including memory signs.



Qualisign We may consider a phenomenon a ‘story’ which we tell by means of
signs. Like any story, also the one of selling a bike is based on primary obser-
vations which are the qualisigns. What is experienced in the given phenomenon
and recognized as a qualisign, can be defined as follows.

A: product; B: differences; ¬A: ownership; ¬B: conditions.

A refers to an observed bicycle which is the possible subject of the actual
sale, for example, a red bicycle with green mudguard. B denotes the properties,
or facts which refer to the differences between the imagined and real product.
For example, if the purchaser wanted to buy a red bicycle with white mudguard,
then there is a difference which lies in the color of the mudguard. In sum, A and
B refer to those sets of qualities which respectively identify the possible ‘thing’
and ‘property’ that the purchaser might want to buy. These qualities may not
determine a product presented in the showroom. Qualisigns are possibles which
are a first approximation of the meaning of the observed phenomenon.

The complementary qualisigns, ¬A and ¬B, refer to those ‘things’ and ‘prop-
erties’ or ‘facts’ which are there, but which are not in the focus of attention. Such
qualities are typically due to memory knowledge. Such knowledge may include
written specifications, handbooks etc. as well. In our example we will assume
that ¬A denotes the form of product ownership, e.g. a sales contract, or leasing;
¬B refers to the judicial and organizational basis of a sale, for example, guar-
antee and service, or the conditions for recompensation in the case of a damage.
Formally, we also define 1 and 0, respectively denoting the case of an effective
sale and no selling.

Icon and sinsign In the first towards the recognition of the given phenomenon
as a proposition the input qualities are sorted yielding an icon and sinsign rep-
resentation of the input.

A+B: that, what the purchaser is focusing on, given as a listing of the observed
product (‘thing’) and the observed discriminating attributes (‘properties’).

A∗B: the signification of the simultaneous observation of the product and the
attributes as an event that happens ‘now’.

Rheme, index and legisign By virtue of selective attention, any perception
may refer to two collections of qualities which are interrelated: one, which is
selected by our attention, and another, that we are not focusing on. From this it
follows that any observation must be embedded in the context of other qualities.

¬A+¬B, ¬A∗¬B: the Shäffer and Peirce functions, respectively, refer to the
icon- and sinsign-like representation of the qualities of the ‘background’ of the
observation. Such a context consists of complementary ‘things’ (ownership)
and ‘facts’ (conditions) that are beyond the purchaser’s attention.

As indicated above, the index signifies the complementary qualities anal-
ogously to those of the observed phenomenon. From this it follows that the



context of the observation must be a phenomenon as well. The two phenomena,
observed and complementary, are interrelated.

The observed product can be related to complementary properties, and the
other way round, the observed differences can be used to identify a product
which is complementary with respect to the actual observation. Such completion
is precisely the meaning of the rheme signs.

A∗¬B: the observed product completed by features, for example, following
the manufacturer’s specification. Such features may include technical data,
price lists etc. Because such features are not part of the actual observation,
the resulting sign can only signify an abstract concept of a bicycle, or briefly,
an abstract product.
¬A∗B: the concept of abstract differences which is defined analogously. An
example for such a sign is the specification of the formal conditions for replac-
ing the green mudguard with a white one, also including the possible effects
of such an adjustment on the price, guarantee conditions etc.

Because, in the end, the purchaser will buy a bicycle which is a single product,
the different sorts of abstractions of the input cannot be independent from each
other. Their relatedness is the meaning of the legisign which, by representing a
listing of such abstract views as a sign, signifies their compatibility. By virtue of
the abstract meaning of such views, the compatibility indicated by the legisign
has the aspect of a rule.

A∗¬B+¬A∗B: that the abstraction of the observed product (A∗¬B) and dif-
ferences (¬A∗B) are compatible, is the meaning of the concept of an abstract
sale, or the notion of bargaining.

The above interpretation of the legisign perfectly illustrates what has been
suggested in the beginning of this paper. Peirce’s signs are there in any problem,
the task of specification is to find out how such signs are denoted. Sometimes we
may be familiar with the name of such a sign, and sometimes there may be no
proper denotation available. In such a case, we may define one by ourselves and
thereby extend language. Because, in our approach, any sign is a representation
of the input qualities, such a denotation will always be meaningful.

Dicent and symbol The two abstractions of the observed qualities, and the
relatedness mediated by the index allow for a further approximation of the given
phenomenon: that, what the purchaser observed as a possible bicycle and the
conditions that complete it to a ‘real’ product define the subject of the actual
purchasing.

A+¬B: the observed bicycle and the formal conditions of the sale are logically
related to each another (cf. implication).
¬A+B: the relation of the actual differences and the corresponding possible
product which is defined analogously.

The dicent sign amounts to the two views of the subject of the actual selling
event. These views are different interpretations of the same object, however the



dicent is only emphasizing the last aspect. That the two views are related and
their contrast defines a property is the meaning of the symbol sign.

A∗B+¬A∗¬B: the simultaneous existence of the two views of the subject
characterizes the selling of a bike as a ‘real’ event, as a property, or predicate
(notice that A∗B+¬A∗¬B is short for (A+¬B)∗(¬A+B)).

Argument What is being sold, is the combination of A and B embedded in
the context of the complementary phenomenon signified by ¬A and ¬B.

A(¬A) is B(¬B): “The selling of (such and such) a bike” is a proposition of
the observed phenomenon.

3.1 Remarks

Earlier we mentioned that, in our model, signs are generated via interactions.
We argue that from the algorithmic content of sign generation an operational
specification can be derived. In this section we briefly summarize the properties
of such a specification.

A percept consists of a finite number of sensory and memory qualities. Hence,
qualisigns can be represented by a finite set. Such a representation trivially
applies to lexically defined qualities like the syntactic relational need of a symbol.
By virtue of the independent nature of qualisigns, there may be introduced
two types for the continuant and occurrent qualities, and two subtypes for the
observed and complementary ones. From the logical meaning of the icon we may
conclude that there must exist two data structures containing references (e.g.
pointers) to the different types of qualisigns, as well as, corresponding access
algorithms. From the meaning of the sinsign we may conclude that the different
types of observed qualities may appear in any order. This implies the potential
need for a parsing algorithm and a suitable representation of the parsed data.

From the linking meaning of the index a conversion algorithm between the
different types of qualities can be derived. Such a conversion operation may be
necessary for computing the abstract data of the rheme, and also, for the imple-
mention of the type checking (cf. compatibility) involved in the meaning of the
legisign. From the operational point of view, the dicent sign can be represented
by a data structure generated from the rheme and the complementary signs via
conversion by means of the index. From the interpretation of the symbol sign,
the definition of a procedure specifying the steps of the selling process can be
derived. Finally, the operational meaning of the argument sign can be specified
as a program applying the procedure of the symbol to the data structure of the
dicent.

This completes the illustration of the use of our Peircean semiotic approach
to the specification of problems which appear as phenomena.



4 An analysis of the model’s complexity

In this section we return to our model of syntactic signs. We define a formal
specification for our language model introduced in [10] and discuss its complexity.
We specify a recognizer for our model of signs as a pushdown automaton.

Formally, the automaton is defined as an 8-tuple M= (K,C, I, Γ, ρ, s0, F,∆)
where K={s0, s1} is a finite set of states, C is a finite set of sign classes, I is
a finite set of input symbols, Γ is a finite set of stack symbols, ρ ∈ I→Γ is
a function defining the relational need of input symbols, s0 is the initial state,
F ⊆ K is a set of final states, ∆ is a transition relation consisting of is a finite
set of transition rules.

A transition rule is a mapping (p, u, β) → (q, γ) where p, q ∈ K are, respec-
tively, the states before and after the transition, u ∈ I∗ are the symbols to be
read, and β, γ ∈ Γ ∗ are the symbols to be popped and pushed.

We will assume that the stack is divided into frames. A frame contains a
storage area for each sign class, consisting of a class name, a location for the
next and the existing sign of the class, and a constant number of locations for
temporary values (see fig. 5).

argument

existing sign

next sign

class name 

temporaries

qualisign

Fig. 5. Stack frame and storage area

The start rule and the rule handling the input of symbols are specified as
follows (ε denotes the empty string, ε ∈ Γ stands for the empty value):

start : (s0, ε, ε)→ (s1, ιε)
read : (s1, u, ιε)→ (s1, ιρ(u))

where ιx denotes a frame in which the existing sign location of the qualisign
class contains the value x (the next sign location of this class is not used). The
other locations of ιε and ιρ(u) have an identical value in the two frames.

All other rules are ‘internal’ transition rules which only operate on the stack
(φ and φ′ denote frames):

transition : (s1, ε, φ)→ (s1, φ
′φ)

We will simplify the specification of a transition rule by only defining φ
and φ′, and only specifying those locations of a frame which are involved in
the transition (those not involved are assumed to have an identical value in φ
and φ′). A further simplification is achieved by representing a frame as a set of
storage areas (instead of a list).



Temporary locations can be necessary, for example, for the evaluation of
a condition. The specification of such computations may require a number of
internal rules which we alternatively define as a (logical) expression. Accordingly,
the specification of temporary locations will be omitted. The value of the next
and existing sign location of a class is a relational need which is a constant (cf.
sect. 2.2).

Nondeterminism is implemented by backtracking ([1]). In a transition rule
we allow a reference to the actual evaluation mode, which can be forward(‘f’) or
backward(‘b’), via the function mode. We will make use of a graph G= (C,E)
where E= Ed∪Eh, Ed,Eh⊆C×C. Ed and Eh are, respectively, the set of di-
rected edges and horizontal lines (undirected edges) as shown in fig. 6 (a formal
definition is omitted). The successors and neighbours of a class are defined,
respectively, by the functions succ(c)= {c′|(c, c′) ∈Ed} and adj(c)= {c′|(c, c′)
∈Eh}. An element of succ(c) and adj (c) is denoted, respectively, as cs and ca.

index

icon

qualisign

argument

dicent symbol

sinsign

rheme legisign

Fig. 6. Transition graph

In sum, in a transition rule we will refer to a set of triples (set brackets are
omitted). An element of such a set is given as a triple (c, s, s′) where c is a class,
and s and s′ are, respectively, the next and existing signs of c (any of s and s′ may
not be specified, in which case they are denoted by a “ ” symbol). The triples on
the left- and right-hand side of a rule, respectively, refer to the current(φ) and
next frame(φ′) located on the top of the stack (notice that a condition always
refers to the current frame). The logical type of the next sign (r) of the qualisign
class, lt(r), is A if r has no a-need in any class; and B, otherwise. The names of
the sign classes are abbreviated to a four letter name.

sorting
(qual , , r), (icon, ε, )→ (qual , , ε), (icon, r, ) IF lt(r) = A.
(qual , , r), (sins, ε, )→ (qual , , ε), (sins, r, ) IF lt(r) = B.

The remaining internal transitions are given by rule schemes for the class
variable X (X ∈ C\{qual}). In virtue of the special conditions required by
the index class ([10]), the triple corresponding to the legisign class is explicitly
defined in some of the rule schemes. These conditions require that a symbol can
become an index having a p-need, either if any other analysis of that symbol
eventually fails, or, if there already exists an a-need due to a legisign symbol.

We make use of the functions cmpacc and cmpbnd which, respectively, yield
true if their arguments can syntactically accumulate and bind in the class speci-



fied. We also apply the functions ntrl, pssv and actv which, respectively, succeed
if their argument has a n-, p- and an a-need in the class given. Additionally we
make use of the functions acc, coerce and bind which, respectively, determine the
relational need of the symbols yielded by accumulation, coercion and binding.
The function cndix checks if the special conditions of the index class hold. The
degenerate variants of the rule ‘binding’ are omitted (in such a case, the result
of binding emerges in the class of one of the constituents). The sentence as a
sign arises in the next sign location of the argument class. The rule schemes are
illustrated in fig. 7-9.

s
accumulation

xs’x acc(.. s,s’)

Fig. 7. Accumulation

accumulation
(X, r, r′)→ (X, ε, acc(X, r, r′)) IF cmpacc(X, r, r′).

coercion1

(X, r, r′), (Xa, ε, ε), (X
s, ε, ), (legi , , rl)→ (X, ε, r), (Xs, rc, )

IF ntrl(X, r′)∧¬cmpacc(X, r, r′)∧cndix (Xs, rc, rl)
WHERE rc = coerce(X, r′, Xs).

coercion2

(X, ε, r′), (Xa, ra, ε), (X
s, ε, ), (legi , , rl)→ (X, ε, ε), (Xa, ε, ra), (Xs, rc, )

IF ntrl(X, r′)∧cndix (Xs, rc, rl)
WHERE rc = coerce(X, r′, Xs).

binding

(X, r, r′), (Xa, ε, r
′
a), (Xs, ε, ), (legi , , rl)→ (X, ε, r), (Xa, ε, ε), (X

s, rb, )

IF pssv(X, r′) ∧ actv(Xa, r
′
a)∧cmpbnd(X, r′, Xa, r

′
a)∧cndix (Xs, rb, rl)

WHERE rb = bind(Xs, r′, r′a).

cndix (X, r, rl) :
X= indx∧(pssv(X, r)∧(mode =‘b’∨actv(legi , rl))∨actv(X, r))∨ TRUE .

On the basis of the above rules, a parser can be defined by using temporary
locations. Such a location may contain the stack representation of an input
symbol, or, one or two constants which are used as pointers to locations of the
previous frame on the stack.

When a segment of input symbols is to be analyzed recursively, transition
may proceed until no rules apply. Then, the current frame is pushed to the stack.
Upon return from a recursion, the current frame and the saved one are ‘merged’
according to the properties of the nested sign.

4.1 Complexity

The directed edges of fig. 6 define a partial ordering on Peirce’s classes of signs.
Earlier we mentioned that a binding resolves, and an accumulation merges a pair
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of relational qualities, whereas a sign generated by coercion inherits the need of
the sign coerced. In sum, there is no increase of the relational qualities in any
interaction. The class of a sign yielded by binding and accumulation is not lower,
and the one yielded by coercion is definitely higher in the partial ordering, than
the class of its constituent(s).

In the conditions of the transition rules we make use operations on sets which
are intersection, e.g. for testing the compatibility of symbols, and union, e.g. for
the generation of the sign yielded by binding (we may need copy operations,
but which can be implemented by means of a finite number of intersections and
unions, as well). The evaluation of a condition may require a constant number
of set operations. Because the sets are finite (they cannot exceed the size of the
lexicon, which is a constant), the complexity of the conditions is O(1) in the
size of the sets and the number of set operations. In as much as the number of
classes as well as the relational need of input symbols are finite, the processing
of an input symbol (which terminates when no transition rule applies) requires
a constant number of transitions which are O(1) complex each. Eventually we
get that the complexity of our model, if nesting is not allowed, is O(n) where n
is the number of input symbols.

The complexity remains unchanged if additionally we allow nesting. We as-
sume that a syntactic symbol’s potential for initiating and terminating a nested
segment (which is analyzed recursively) is defined analogously to the symbol’s
syntactic relational properties. Accordingly, an input symbol may ‘start’ or ‘end’
a nested analysis only a finite number of times, which is lexically defined.

We assume that the stack frames are linked to each other via a ‘previous
frame’ pointer which is stored in a temporary location. Upon entering a recursion



of stack frames

input

nesting ‘structure’

visit sequence

Fig. 10. Sample nested input analysis

the current frame is saved. Upon return, there will be a single (nested) sign in the
topmost frame of the stack. Let k denote the number of input symbols involved
in the recursively analyzed segment. Then, to find and fetch the values of the last
saved frame needs at most O(k) steps, but the frames involved in this process
will not be visited anymore. This can be solved by adjusting the previous frame
pointers of the frames of the recursively analyzed segment. Accordingly, any
frame will be visited at most three times (cf. fig. 10) and the complexity of the
algorithm will be 3∗O(n) which is equivalent to O(n).

5 Conclusion

In the first part of this paper we argue that any problem (which is a phenomenon)
can be specified in terms of Peirce’s sign. Contrary to the traditional way of
specification which, by virtue of its formal character is doomed to be ad hoc,
the promise of the Peircean approach is that the nine kinds of signs are always
there and we only need to identify them.

In the second part, we prove that the complexity of the Peircean model
of language introduced in [10] is linearly complex. We argue that this result
applies to other sign phenomena as well. Because the perceived qualities of a
phenomenon can always be represented by a finite set, the complexity of sign
generation can be linear in general (the sequentiality assumption used in the
language model does not affect this result). Because knowledge emerges from
the perception of ‘real’ world phenomena, the results of this paper imply that
human knowledge can possess a linearly complex representation. This, of course,
does not impose any restrictions on the complexity of ‘real’ world phenomena
which can be arbitrary. Understanding a problem and knowing all its solutions
are different. Knowledge representation is only concerned with the first of these.
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