Question 1: Will the following program (eventually) terminate? Assume that reading or writing a single variable is atomic.

\[
\begin{align*}
i &\leftarrow 0 \\
j &\leftarrow 0 \\
\text{thread while } i = 0 & \Rightarrow \\
& \text{DO } j \leftarrow j + 1 \text{ mod 2 } ; \text{ print } i \\
& \text{print } i \\
\text{thread while } i = 0 & \Rightarrow \\
& \text{do if } j = 0 \text{ then } i = 1 \\
\end{align*}
\]

Answer: No, this program will not eventually terminate. Consider the following schedule. Initially \(i, j = 0 \). The first thread runs the while loop once. Now \(j = 1 \). Then the next thread runs the while loop once, sees \(j = 1 \) and hence does not change \(i \), i.e \(i \) stays 0. Now the first thread runs again, cycling the while loop twice. After that again \(j = 1 \). And we return to the second thread. This is a schedule that creates an infinite run in which both threads take steps infinitely often.

Question 2: Will the following program (eventually) terminate, or is it possible that it runs forever? Assume that reading or writing a single variable is atomic.

\[
\begin{align*}
a &\leftarrow 1 \\
b &\leftarrow 1 \\
\text{thread while } a \neq 0 & \Rightarrow \\
& \text{do } b \leftarrow (b + a) \text{ mod 2} \\
\text{thread while } b \neq 0 & \Rightarrow \\
\end{align*}
\]
\begin{align*}
do a & ← a + 1 \\
a & ← 0
\end{align*}

Answer: Suppose $b = 1$.

Let the second thread take a single step (changing a from odd to even or vice versa). If a has become odd, let the first thread take two steps. Then after those two steps b again is equal to 1. If a has become even, let the first thread take one step. After that single step b still equals 1.

This can be repeated forever (assuming a is unbounded).

Alternative answer: Let second thread do one step; now a is even. Then continue with the following steps forever: let the first thread do one step (because a is even, b remains 1), and then let the second thread do two steps so a becomes even again.

P.S.: Note that the assignment $a ← 0$ is not part of the loop body!

Question 3: Lamport’s logical clock algorithm works in the message passing model. Modify Lamport’s logical clock algorithm to assign logical clock values to all events in a shared memory system that supports atomic reads and atomic writes to shared memory. Prove that the logical clock created by your algorithm can be used to put the events in a total order $\langle A, ⇒ \rangle$ consistent with the partial order $\langle A, → \rangle$.

Answer: Every node has a local counter c_i as in Lamport’s algorithm, initially 0 and incremented after every action of node i. We assign $C_i(a) = c_i$, where c_i is the value of the local counter just before action a is executed.

Let $n(a) = i$ when a is executed by node i. We define $C(a) = C_{n(a)}(a)$.

Every shared memory location s is assigned a label T_s, initially 0. Whenever an atomic write action w by node i stores a value in s, T_s is assigned $C_i(w)$. Whenever an atomic read action r by node j reads a value from s, $c_j ← \max(c_j, T_s + 1)$ and $C_j(b) = c_j$ right after that.

We define $\langle A, ⇒ \rangle$ by

$$a ⇒ b ⇐⇒ \langle C(a), n(a) \rangle < \langle C(b), n(b) \rangle$$

To prove that the logical clock created by this algorithm puts the events in a total order $\langle A, ⇒ \rangle$ consistent with the partial order $\langle A, → \rangle$, we have to show that for any two actions $C(a) < C(b)$ when $a → b$.

If a and b are events on the same node i, this follows from the way counter c_i is updated in between events.

If a and b are events on different nodes i and k, then by the definition of $→$ on shared memory systems there is a chain shared of variables $s_{i_1}, \ldots s_{i_j}$ and writes $w(s)$ and reads $w(s)$ on them such that

- $a → w(s_j)$ on the same node.
- $w(s_j) → r(s_j)$ possibly occurring on different nodes.
• \(r(s_i) \rightarrow w(s_{i+1}) \) occurring on the same node.

• \(r_j \rightarrow b \) on the same node.

By definition of our logical clock we have

• \(C(a) < C(w(s_i)) \)

• \(C(w(s_i)) < C(r(s_i)) \)

• \(C(r(s_i)) < C(w(s_{i+1})) \)

• \(C(r_j) < C(b) \).

which proves that \(C(a) < C(b) \) as required.