Question 1: Will the following program (eventually) terminate? Assume that reading or writing a single variable is atomic.

\[
i \leftarrow 0 \\
j \leftarrow 0
\]

\textbf{thread while } i = 0 \\
\text{DO } j \leftarrow j + 1 \mod 2 \; \text{; print } i \\
\text{print } i

\textbf{thread while } i = 0 \\
\text{do if } j = 0 \text{ then } i = 1

Answer: No, this program will not eventually terminate. Consider the following schedule. Initially \(i, j = 0 \). The first thread runs the while loop once. Now \(j = 1 \). Then the next thread runs the while loop once, sees \(j = 1 \) and hence does not change \(i \), i.e \(i \) stays 0. Now the first thread runs again, cycling the while loop twice. After that again \(j = 1 \). And we return to the second thread. This is a schedule that creates an infinite run in which both threads take steps infinitely often.

Question 2: Will the following program (eventually) terminate, or is it possible that it runs forever? Assume that reading or writing a single variable is atomic.

\[
a \leftarrow 1 \\
b \leftarrow 1
\]

\textbf{thread while } a \neq 0 \\
\text{do } b \leftarrow (b + a) \mod 2

\textbf{thread while } b \neq 0
\[\text{do } a \leftarrow a + 1 \]
\[a \leftarrow 0 \]

Answer: Suppose \(b = 1 \).

Let the second thread take a single step (changing \(a \) from odd to even or vice versa). If \(a \) has become odd, let the first thread take two steps. Then after those two steps \(b \) again is equal to 1. If \(a \) has become even, let the first thread take one step. After that single step \(b \) still equals 1.

This can be repeated forever (assuming \(a \) is unbounded).

Alternative answer: Let second thread do one step; now \(a \) is even. Then continue with the following steps forever: let the first thread do one step (because \(a \) is even, \(b \) remains 1), and then let the second thread do two steps so \(a \) becomes even again.

P.S.: Note that the assignment \(a \leftarrow 0 \) is not part of the loop body!

Question 3: Lamport's logical clock algorithm works in the message passing model. Modify Lamport's logical clock algorithm to assign logical clock values to all events in a shared memory system that supports atomic reads and atomic writes to shared memory. Prove that the logical clock created by your algorithm can be used to put the events in a total order \(\langle A, \Rightarrow \rangle \) consistent with the partial order \(\langle A, \rightarrow \rangle \).

Answer: Every node has a local counter \(c_i \) as in Lamport's algorithm, initially 0 and incremented after every action of node \(i \). We assign \(C_i(a) = c_i \), where \(c_i \) is the value of the local counter just before action \(a \) is executed.

Let \(n(a) = i \) when \(a \) is executed by node \(i \). We define \(C(a) = C_n(a)(a) \).

Every shared memory location \(s \) is assigned a label \(T_s \), initially 0. Whenever an atomic write action \(w \) by node \(i \) stores a value in \(s \), \(T_s \) is assigned \(C_i(w) \). Whenever an atomic read action \(r \) by node \(j \) reads a value from \(s \), \(c_j \leftarrow \max(c_j, T_s + 1) \) and \(C_j(b) = c_j \) right after that.

We define \(\langle A, \Rightarrow \rangle \) by

\[a \Rightarrow b \iff \langle C(a), n(a) \rangle < \langle C(b), n(b) \rangle \]

To prove that the logical clock created by this algorithm puts the events in a total order \(\langle A, \Rightarrow \rangle \) consistent with the partial order \(\langle A, \rightarrow \rangle \), we have to show that for any two actions \(C(a) < C(b) \) when \(a \rightarrow b \).

If \(a \) and \(b \) are events on the same node \(i \), this follows from the way counter \(c_i \) is updated in between events.

If \(a \) and \(b \) are events on different nodes \(i \) and \(k \), then by the definition of \(\rightarrow \) on shared memory systems there is a chain of shared variables \(s_{i_1}, \ldots, s_{i_j} \) and writes \(w(s) \) and reads \(w(s) \) on them such that

- \(a \rightarrow w(s_j) \) on the same node.
- \(w(s_j) \rightarrow r(s_j) \) possibly occurring on different nodes.
\begin{itemize}
 \item $r(s_i) \rightarrow w(s_{i+1})$ occurring on the same node.
 \item $r_j \rightarrow b$ on the same node.
\end{itemize}

By definition of our logical clock we have
\begin{itemize}
 \item $C(a) < C(w(s_i))$
 \item $C(w(s_i)) < C(r(s_i))$
 \item $C(r(s_i)) < C(w(s_{i+1}))$
 \item $C(r_j) < C(b)$.
\end{itemize}

which proves that $C(a) < C(b)$ as required.