Question 1: What are the worst case number of steps before Dijkstra’s algorithm reaches a legitimate state, when \(K \geq N\) and assuming a central daemon and when started in an arbitrary bad state?

Answer: Start the system in the following state: \(x[i] = N - i\) for all \(i, 0 < i \leq N\), and let \(x[0] = 0(= x[N])\). In round \(r, 0 \leq r\), let

- Node 0 takes a step \((x[0] = x[N] = r)\) to obtain the value \(x[0] = r + 1 \mod K\). This is one step.

- For \(j\) equals \(N - r\) up to \(N\), node \(j\) sets \(x[j] = x[j - 1]\). This takes \(r + 1\) steps.

At the end of round \(r\), we have \(x[N - r - 1] = \ldots = x[N] = x[0] = r + 1\). We can repeat this until \(r = N - 1\); after that the state is legitimate (it becomes so with the last step of \(x[N]\) becoming \(N \mod K\) (we may have wrap around!). The total number of steps taken is

\[
\sum_{r=0}^{N-1} r + 2 = 2N + \sum_{r=0}^{N-1} r = N + \sum_{r=0}^{N} r = N + 1/2N(N + 1) = 1/2N^2 + 3/2N
\]

So the number of steps is \(O(n^2)\), and we now from the correctness proof that this is also maximum number of steps it takes the algorithm to stabilise.

Of course this method does not prove that this particular case is really the worst case scenario. On the other hand, we can extend the self-stabilisation proof explained during the lecture to show that the protocol always stabilises in at most \(O(n^2)\) steps, so this is the worst case in terms of order of magnitude.

Question 2: Prove Dijkstra’s algorithm correct if \(K > N\) assuming a distributed daemon.

Answer: We first prove convergence.
Let $K > N$, and let node 0 be about to take the first step. In that case (just before the step), $x[0] = x[N]$. As there are $N + 1$ nodes, this means the maximum number of different values held by all these nodes is at most N. With $K > N$, there is a possible value, say a, that is not held by any node. Continue taking steps (verify for yourself that this is always possible) until $x[0]$ becomes a. This is the first time the value a occurs in the system. The next time node 0 takes a step happens when $x[N] = a$ too. This only happens if all intermediate nodes have copied the value a, i.e. $x[i] = a$ for all i. This is a legitimate state.

Closure is proven the same way as in the central daemon case.