Homework lecture 5
Agreement and consensus I:
concepts and protocols for crash failures

Jaap-Henk Hoepman
jhh@cs.ru.nl
May 13, 2019

Question 1: Suppose a protocol can tolerate (i.e. works when confronted with) byzantine failures. Will the same protocol tolerate (the same number of) crash failures?

Answer: Yes. A crash failure is a special kind of byzantine failure, namely one where the arbitrary action of the processor is the action of not doing anything anymore.

Question 2: How many messages does the consensus protocol for crash failures exchange if there are no failures?

Can you somehow optimize this?

Answer: To answer the first part of the question, let \(n \) be the number of processors and \(f \) be the maximal number of faulty ones. The protocol specified that in each round \(r \), with \(1 \leq r \leq f + 1 \), a processor \(p \) does the following. It sends, for all \(\sigma \) with \(|\sigma| = r - 1 \land p \notin \sigma \), a message to all \(q \) including \(p \).

How many \(\sigma \) with \(|\sigma| = r - 1 \land p \notin \sigma \) are there? Remember that \(\sigma \) never contains the same processor more than once. Hence for the first element in \(\sigma \) we have \(n - 1 \) choices (remember: \(p \notin \sigma \)), for the next we have \(n - 2 \) choices, etc. That means there are

\[
\frac{(n-1)!}{((n-1)-(r-1))!} = \frac{(n-1)!}{(n-r)!}
\]

such \(\sigma \) with \(|\sigma| = r - 1 \land p \notin \sigma \). For these, \(n \) messages are sent (to all processors \(q \) including \(p \)). I.e. processor \(p \) sends

\[
n \frac{(n-1)!}{(n-r)!} = \frac{n!}{(n-r)!}
\]

messages in round \(r \). In total all processors then send

\[
n \sum_{r=1}^{f+1} \frac{n!}{(n-r)!}
\]
messages.

To answer the second part of the question, recall the decision rule. Let \(V_p = \{ v \mid v = v_p^\sigma \in T_p \land v \neq \bot \} \). The decision rule says that \(p \) decides on \(v \) if \(V_p = \{ v \} \) and on a default value \(v_{\text{def}} \) otherwise. In other words, as soon as \(|V_p| > 1 \), i.e. as soon as the tree contains two different values (also different from \(\bot \)), then \(p \) decides on the default. This means that as soon as the tree contains two such different values, \(p \) knows enough to decide. Moreover, if \(p \) is non faulty, it will have sent these two values to all other processors. This means all other non-faulty nodes have received these two different values and hence will also decide on the default.

This means the protocol can be modified in the following manner. Processors keep a set of sent values \(S_p \), initially empty. In each round \(r \) processor \(p \) does the following. It sends, for all \(\sigma \) with \(|\sigma| = r - 1 \land p \notin \sigma \), a value \(v_p^\sigma \) to all \(q \) including \(p \), provided \(v_p^\sigma \notin S_p \). It adds \(v_p^\sigma \) to \(S_p \).

This drastically reduces the message complexity. Each processor sends at most 2 messages to all other processors. The total number of messages sent is therefore never more than \(2n^2 \).

Question 3: Consider an asynchronous system of \(n \) processes, \(f \) of which may fail by crashing (only). Let each process \(p \) have an input value \(C[p].in \in \{0,1\} \). Consider the following protocol for process \(p \).

\[
\text{forall } q \text{ (including } p) \text{ send } C[p].in \text{ to } q.
\]

\[
\text{receive } n - f \text{ values and store them in the multiset } V.
\]

\[
\text{decide on } C[p].decision = \text{majority}(V)
\]

(where \(\text{majority}(V) \) computes the majority of values in the multiset \(V \), returning 1 if there is a tie). Now answer the following questions.

a) Why can the algorithm only consider \(n - f \) received values (and no more) to compute the majority, even if no processes crashed?

b) Why can different processes decide on different values using this protocol?

c) How many 0 (or 1) valued inputs should there be initially, to guarantee that all correct processors decide on the same value?

Answer:

a) Even if no processes crash, there is no way for a process to know this in advance. If it waits for more than \(n - f \) values to receive before computing a decision, it may wait forever (in an execution in which \(f \) processes do crash).

b) Suppose \(n \) is even, and let \(f = 1 \). Consider a scenario where the first \(n/2 \) processes have input 0, while the last \(n/2 \) processes have input 1.
If no process crashes, there are $n/2$ zeros and $n/2$ ones being sent to each process. However, each process receives at most $n - f = n - 1$ values into V. Because the system is asynchronous, there is no guaranteed order in which messages are delivered. Therefore in some cases V may contain $n/2$ zeros and $n/2 - 1$ ones (deciding 0) or vice versa.

c) A process decides 1 if it receives at least $\lceil (n - f)/2 \rceil$ ones, and 0 if it receives at least $\lfloor (n - f)/2 \rfloor + 1$ zeros (note that 0 and 1 are the only possible decision value). Suppose at least one process p decides 1. To ensure no other process receives $\lfloor (n - f)/2 \rfloor + 1$ or more zeros, the number of processes having input 0 must be less than $\lfloor (n - f)/2 \rfloor + 1$. So there must be at least $n - \lfloor (n - f)/2 \rfloor + 1$ processes having input 1. (Or, the other way around, the number of processes having input 1 must be less than $\lceil (n - f)/2 \rceil$.)

Alternative answer: a process needs to receive at least $\lfloor (n - f)/2 \rfloor + 1$ copies of the same value to ensure this is the majority, and thus the value decided. Of all input values sent a process receives only $n - f$, i.e. it looses an arbitrary f of the input values. hence if at least $\lceil (n - f)/2 \rceil + 1 + f \sim n/2 + f/2 + 1$ of the input values are the same, all processes receive at least $\lfloor (n - f)/2 \rfloor + 1$ copies of that value and decide on it.