Advanced Network Security 2017

Agreement and consensus II — Byzantine failures
Q2: How many messages does the crash-tolerant consensus algorithm exchange?

- n processors
- f failures (at most)
- r: is the current round

Every processor p, in round r, sends for all $1 \leq \ell = r-1$, $p \neq \sigma$, it sends v^p_r to all other q

How many such σ are there

$- (n-1)(n-2) \ldots \frac{(n-1)!}{(n-r)!} = \frac{(n-1)!}{(n-r)!}$

So in round r, $n \cdot \frac{(n-1)!}{(n-r)!} \rightarrow$ for one processor

In total all processors $n \cdot \sum_{r=1}^{f+1} \frac{(n-1)!}{(n-r)!}$
Q2: (continued): Can we optimize this?

\[T_p \rightarrow V_p = \{ v | v \in T_p \} \]

Instead of always "forwarding" all values you receive, only forward a new value!

\[2n^2 \]

You only send the value 0 once to all, and the value 1 once to all.
Byzantine failures

Would the protocol for crash failures still work?

Well:

$$|\sigma| = f + 1$$

If $$v \in T_p = v \in T_q$$

to all other nodes, including $$v$$

can be faulty!!

with byzantine failures,

nodes can lie $$\Rightarrow v_{101}^p \neq v$$
Q: can we think of a protocol that tolerates arbitrary
number of byzantine failures? Or, does such a
protocol not exist?

A: No! We need to assume $f < n/3$

Example: $n = 3$, $f = 1 \Rightarrow$ impossible (if possible if $n = 4$)

\[a \quad \text{good byzantine} \quad a \quad a \]

\[a, b: \text{must decide 1} \quad a, c: \text{must decide 0} \]

no agreement: contradiction
A protocol for byzantine consensus if $f < n/3$

Tree T_p maintained by node p, it contains values V^p_0 where if $o: q_1, q_2, \ldots, q_k$ means:
- q_k told p that q_{k-1} told q_k that q told q, that
- q's value is v

V^p_0 is input to p itself

Let us define Majority (S) to be the value that occurs most in bag S (breaking ties deterministically).

For a leaf: $d^p_0 = v^p_0$
Protocol for Byzantine failures

- Initialise tree: set all \(v_p^0 = + \) and \(v_e^0 = CGpJ.in \).
- Round \(r \), \(1 \leq r \leq f+1 \)
 - for all \(q \) with \(|\sigma| = r - 1 \) \& \(p \notin \sigma \):
 send \(v_q^p \) to all \(q \) (including \(p \)); call this message \(m_q^q \).
 - receive all \(m_q^q \) addressed to \(p \) and store in \(v_p^q \).
 (by the protocol \(x \notin \sigma \) so \(p \) receives \(n-(r-1) \) such messages from each \(x \)).
- To decide work from the leaves up the tree
 - \(d_p^0 = v_p^p \) for \(|\sigma| = f+1 \).
 - \(d_p^e = \text{Majority} (\{ d_q^p | q \notin \sigma \}) \).
 - Node \(p \) decides \(d_p^e \).

this part the same as for crash failures
Lemma 1: If \(p, q \) and \(r \) are not faulty, then for all possible \(\sigma \) we have \(v^p_{\sigma; r} = v^q_{\sigma; r} \)

Lemma 2: Let \(\sigma \) be arbitrary and let \(r \) be non-faulty. Then there is a value \(v \) such that for non-faulty \(p \) we have \(d^p_{\sigma; r} = v^q_{\sigma; r} = v \)

Proof: by induction on the length of \(\sigma; r \), starting at the leaves

base case: \(|\sigma; r| = f + 1 \)

level \(f \) \(V^r_{\sigma} = v \)

level \(f + 1 \) \(V^p_{\sigma; r} = v \) \(V^q_{\sigma; r} = v \)

\(d^p_{\sigma; r} = v \) \(d^q_{\sigma; r} = v \)

by majority decision rule \(d^q_{\sigma; r} = v \)

by induction \(V^r_{\sigma} = v \)

\(n - |\sigma; r| = n - f > 2f \)

\(\Rightarrow \) the majority of children is correct

\(\Rightarrow \) all these correct children have \(d = v \)

You need \(f < n/2 \) here.
Validity: if all non-faulty processors have input \(v \), they decide on \(v \).

Proof: If this is the case, they all send \(v \) to all other processors in the first round: \(v_q^p = v \) for all correct \(p, q \).

By lemma 2, this means that \(d_g^p = v \) for all correct \(p \) and \(q \).

\[
\text{d}_e = \text{majority} \left(\sum d_q^p \mid \text{for all } q \geq 3 \right) = v
\]
Agreement

Definition 1: \(\sigma\) is common if \(d^p_\sigma = d^q_\sigma\) (for all non-faulty \(p, q\)).

Definition 2: A subset of nodes \(C\) in a tree \(T_p\) is path cover if all paths from the leaves to the root visit at least one node in \(C\).

Definition 3: A path cover \(C\) is common if all nodes in \(C\) are common.

\[\text{warning: that does not mean that for different } \sigma, \sigma' \text{ that } d^p_{\sigma} = d^q_{\sigma'}\]
Lemma 3: There exists a common path covering of the tree constructed by the consensus algorithm.

Proof: All leafs in the tree correspond to a path \(s \) of length \(f+1 \).

So \(s = s', s \geq s'' \) for some non-faulty \(r \).

By Lemma 2, \(d_{s',r} = d_{s'',r} \) for all non-faulty \(q, p \).

\(\Rightarrow s, r \) is common and on the path.
Lemma: Let \(\sigma \) be a node in a tree. If there is a common path covering of the subtree rooted at \(\sigma \), then \(\sigma \) is common itself.

Proof: By induction on the length of \(\sigma \):
- If \(|\sigma| = f+1\), the lemma holds trivially.
- Let us assume \(|\sigma| \leq f\) and there is a common path covering \(\mathcal{C} \) for the subtree rooted at \(\sigma \).

Then all children of \(\sigma \) have a common path covering (essentially \(\mathcal{C} \), split over the subtrees). And by the induction hypothesis, these children then are all common.

Hence \(d^p_{\sigma,r \mid \sigma} = d^q_{\sigma,r \mid \sigma} \) for all pairs \(p,q \) \(\Rightarrow \)

\[
d^p_{\sigma} = \text{Majority} \left(\{ d^p_{\sigma,r \mid \sigma} \mid r \neq r_0 \} \right) = \text{Majority} \left(\{ d^q_{\sigma,r \mid r_0} \} \right)
\]

\(= d^q_{\sigma} \) \(\Rightarrow \) \(\sigma \) is common.
If we assume authentication, we can build a more efficient Byzantine consensus protocol. If \(p \) is Byzantine, it can still send arbitrary messages (with valid signatures) to all other nodes.
(Binary) broadcast protocol (for one sender \(p \))

- \(p \) aka agreement protocol

- \(p \) does the following in round 1:
 - if \(\text{CEP}_p \) in \(t \) then send \(\text{CEP}_p \) to all other nodes
 - decide \(\text{CEP}_p \), in

- Other nodes \(q \):
 - for each round \(r \in [1..f+1] \)
 - if you receive a valid \(\text{CEP}_q \) \(C(1^r = r) \), \((o = p ; o' - p) \)
 - then send \(\text{CEP}_q \) to all other nodes
 - and decide on the value 1. Then stop
 - decide on \(o \) and terminate

\[(|r| = f + 1) \rightarrow \]
\[1 \leq q < f + 1 \Rightarrow q \text{ sends } [\text{CEP}_q]_q \text{ to all} \]