Advanced Network Security
2017

Self-stabilisation
Self-stabilisation

- not process failures — but memory failures

these could happen many times

transient errors

error changes the memory content

permanent

network

RAM

data

code

ROM

node
System model

- n nodes
 - uniform: all nodes have the same state & program code
 - non-uniform
 - whether nodes know their identity → if so, it is stored in Root

- communicate through shared memory
 - $G = (V, E)$ $(u, v) \in E$ then these nodes can communicate
 - state reading: $(u, v) \in E$ then v can read u's state (completely)
 - link-register model: $(u, v) \in E$ then u writes a register that v can read

- Configuration $C \in G$: cartesian product of all node states (and link registers if present)
- System \((G, F)\)
 - a node \(i\) has \(f_i \in F\)
 \[
 e' = f_i(c) \leftarrow \text{new step current state}
 \]

- uniformity: \(f_i = f_j\) for \(i, j\)
- known identities: \(f_i(c)\) may depend on \(i\)

- Scheduling
 - central daemon
 - scheduler fairly selects one node \(i\) to take a step: \(C \rightarrow c'\)
 - distributed daemon
 - \(\ldots\) a set of nodes \(I\) to take a step: \(I \rightarrow c'\)
 - all nodes first read their "incoming" states / registers
 - compute the new state
 - and then write the new state \(C\) and the registers
Self-stabilising

L is a global property

but nodes only see local information

ring

Self-stabilising system cannot terminate

a node doesn't know whether the configuration is legitimate

L - legitimate states

bad state

converges

closure

every node is in the critical section

typically defined using a predicate
Some toy problems

- We have one node, and some R

 Let x be the state of the node

 \[
 \begin{align*}
 &\text{if } x \in R \rightarrow \text{skip} \\
 &\text{if } x \notin R \rightarrow x \in L
 \end{align*}
 \]

- Suppose there are n nodes, and G is the complete graph, and we are in the state reading model

 Here at least a node can see whether the global configuration is in R

 \[
 \begin{align*}
 &\text{if } c \in L \rightarrow \text{skip} \\
 &\text{if } c \notin L \rightarrow ? \text{ a local change may not make } c' \in L
 \end{align*}
 \]

 \[\left(\exists c : J \subsetneq \emptyset\right)\]
Last example

- clock-synchronisation
 - local state $c[i]$ of node i is a local clock
 - you want all clock values to be equal

\[\Downarrow \]

- complete graph?
- risky?
Mutual exclusion on a ring

One node is privileged

Predicate on local state

Mutual exclusion

Self-stabilisation not possible on rings of non-prime size!
\begin{itemize}
 \item \(N+1\) nodes: 0..N
 \item \(K>N\)
 \item Each node has state \(x[i] \in \{0,..,K-1\}\)
 \item Protocol:
 \begin{align*}
 \text{node } \phi: & \quad \text{if } x[N] = x[0] \rightarrow x[0] \leftarrow x[0]+1 \\
 \text{node } i \neq \phi: & \quad \text{if } x[i-1] \neq x[i] \rightarrow x[i] = x[i-1]
 \end{align*}
 \item Privilege: node \(\phi\) is privileged if \(x[N] = x[0]\)
 \item node \(i\): \(x[i-1] \neq x[i]\)
\end{itemize}

General proof strategy:
\begin{enumerate}
 \item Defining the legitimate states \(L\)
 \item Prove closure: \(c \in L\) and \(c \rightarrow c'\) then \(c' \in L\)
 \item Prove convergence: given \(c \in G\) there is a run \(\sigma\) s.t. \(c' \in L\), \(c \stackrel{\sigma}{\rightarrow} c'\)
\end{enumerate}

Legitimate states are those where we have an \(i\), \(0 \leq i \leq N\)
and \(a \in \{0..K-1\}\) s.t. for all \(j\), \(0 \leq j \leq i\): \(x[j] = a+1 \mod K\).

\[P(i,a): \quad \text{for all } j, \quad i < j \leq N: \quad x[j] = a\]
Proof of correctness
- legitimate states correspond to mutual exclusion
- let's assume a central daemon, and \(K \geq N \)

Closure
- assume system is in a legitimate state, i.e. \(P(i,a) \) holds for some \(i \) and \(a \)
- \(K = i + 1 \mod N \) is enabled
 - if \(k \neq 0 \) then after the step \(x[K] = a + 1 \mod K \), and so \(P(i+1, a) \) holds
 - if \(k = 0 \) then after the step \(x[0] = a + 2 \mod K \) while all other nodes have \(x[j] = a + 1 \mod K \) \(\Rightarrow \)
 \(P(0, a + 1 \mod K) \) holds
Convergence

- the first time node φ takes a step: colour it blue
- when a node copies a value from a blue node, it becomes blue
- if all nodes are blue then system is legitimate

Node φ is only taking a step if node N has the same value as node φ.

Node φ can take at most $N-1$ steps before node N is blue.

If value is at most $N-1$, and because $N \leq K$ we have no wrap around.