Advanced Network Security

2. Distributed Algorithms: Leader Election

Jaap-Henk Hoepman

Digital Security (DS)
Radboud University Nijmegen, the Netherlands
@xotoxot // jhh@cs.ru.nl // www.cs.ru.nl/~jhh
Leader election: motivation

- **IBM token ring (1970)**
 - For local area network
 - Single token traversing ring
 - Station with token was allowed to send

- **How to**
 - Start the network?
 - 0 tokens
 - Recover from an error?
 - >1 tokens
Leader election (1)

- **Given a graph** $G = (V, E)$ of nodes, design a protocol that will elect a single node as leader

- **Output stored in local variable** $C[i].leader$
 - There is one node i with $C[i].leader = true$
 - For all $j \in V, j \neq i$ we have $C[i].leader = false$

- **Assumptions**
 - G is connected, i.e. nodes can reach each other; we assume a bidirectional ring network here
 - Nodes have unique identifiers $C[i].id$
 - *E.g. a MAC address*
 - *Note that nodes do NOT know V (i.e. the set of identities in the graph)*
Leader election (2)

- **Requirements**
 - Correctness: at most one leader is elected (and once elected stays elected).
 - Progress: eventually a leader is elected.

- **Leader election used, for example to**
 - Recover from errors (the leader coordinates the repair)
 - Initiate another higher-level distributed algorithm
How would/could you solve this?
Some non-solutions

- **Node i with $C[i].id = 0$ becomes leader**
 - May not exist. E.g. if identifiers are based on MAC addresses

- **Consider the following protocol for node i**

 Send clockwise (right) $C[i].id$
 Receive counterclockwise (left) id
 $C[i].leader = (C[i].id < id)$

 - This protocol assumes that $C[i].id = i$, i.e. assigned increasing along the ring, this is not necessarily the case
LeLann’s protocol: leader election on a ring

Assumption
- FIFO message passing and unique identifiers
- Note: nodes do not know the size of the ring
- Unidirectional communication (clockwise only)

Protocol for node i

\[
\begin{align*}
I_i &= \emptyset \\
C[i].leader &= false \\
send &\text{ right } C[i].id \\
while &\quad C[i].id \notin I_i \quad do \\
&\text{ receive left } id \\
&\quad I_i = I_i \cup \{id\} \\
&\quad send &\text{ right } id \\
C[i].leader &= (C[i].id = \min j \in I_i)
\end{align*}
\]
LeLann

- Why does this work?
- What is the message / round complexity?
- What if message passing is not FIFO?

\[
\begin{align*}
I &= \emptyset \\
C[i].leader &= false \\
& \text{send right } C[i].id \\
& \text{while } C[i].id \not\in I \\
& \quad \text{do receive left } id \\
& \quad \quad I = I \cup \{id\} \\
& \quad \quad \text{send right } id \\
& C[i].leader = (C[i].id = \min j \in I)
\end{align*}
\]
\[I = \emptyset \]
\[C[i].leader = false \]
\[\text{send right } C[i].id \]
\[\text{while } C[i].id \notin I \]
\[\text{do receive left } id \]
\[\quad I = I \cup \{id\} \]
\[\quad \text{send right } id \]
\[C[i].leader = (C[i].id = \min j \in I) \]
LeLann

Why does this work?
- See proof further on

What is the message / round complexity?
- Every node forwards messages until it receives its own id back.
- If the size of the ring is n, each node sends $n + 1$ messages
- Total number of messages sent is $n(n + 1)$
- Round complexity is n

What if message passing is not FIFO?
- Homework ;-)
LeLann proof of correctness (1)

Correctness: at most one leader is elected (and once elected stays elected).

- We need to prove that for all nodes i,j that reach the election point, we have $I_i = I_j$. Then the result follows as nodes have unique identifiers.
- In fact we will show that we have $I_i = I_j = \{C[k].id | k \in [0, n - 1]\}$ (nodes are numbered clockwise around the ring, and n is the number of nodes – which is unknown to the number of nodes!)
- In what follows, let I_i be the list of values, in the order in which they were received (instead of a set).
LeLann proof of correctness (1)

[correctness proof continued]

- We prove this using induction on the r-th message node i receives; in fact we show that when node i receives the r-th message, it actually received $I_i = (C[i - 1 \text{ mod } n].id, \ldots, C[i - r \text{ mod } n].id)$ in that order.
- For round $r = 0$ (i.e. initially) the statement holds trivially: no messages have been received so far and $I_i = ()$
LeLann proof of correctness (2)

[correctness proof continued]

- For round \(r' = r + 1 \) observe
 - All message received by node \(i \) by round \(r' = r + 1 \) must have been sent by its left hand neighbour \(j = i - 1 \mod n \) in or before round \(r \).
 - At the end of round \(r \) node \(j \) has sent all values in \(I_j \) to \(i \), in the same order, but first sent out \(C[j].id \).
 - Because of the FIFO property node \(i \) receives these in the same order.
 - Using the induction hypothesis \(I_j = C[j - 1 \mod n].id, ..., C[j - r \mod n] \) in that order.
 - Then \(i \) receives \(C[j].id, ..., C[j - r \mod n] = C[i - 1 \mod n].id, ..., C[i - r'].id \) in that order as required.
LeLann proof of correctness (3)

[correctness proof continued]

- If node i reaches the election point then $C[i].id \in I_i$
- This happens when the r-th message node i receives (so $r > 0$), i.e. the message $C[k].id$ with $k = i - r \mod n$, equals $C[i].id$.
- As identities on the ring are unique, this implies $k = i$ and so $r = n$ and hence, $I_i = (C[i - 1 \mod n].id, ..., C[i - n \mod n].id)$
- In other words $I_i = \{C[k].id | k \in 0, n - 1\}$ as required.
LeLann proof of correctness (3)

- **Progress: eventually a leader is elected.**
 - Let node i have the smallest $C[i].id$
 - Initially node i sends $C[i].id$ to its right-hand neighbour
 - This means a message $C[i].id$ is either in transit on a link (meaning the next node will eventually receive it) or received by the node (meaning it will be sent out to the right by that node)
 - Whenever this message is sent, it moves one step closer back to node i
 - Eventually node i receives $C[i].id$ (and sends it once more the right) and then stops
 - It determines that $(C[i].id = \min_i i \in I)$ and hence becomes leader as required
What if nodes do not have unique identifiers?

deterministic

The same state initially
What if nodes do not have unique identifiers?

- Then there exists a symmetric configuration C
 - where all nodes have the same state, and all edges have the same state
 - I.e. either all nodes are leaders, or no node is leader

- Starting in C let all nodes take a step (the same) in turn, then
 - all steps are local steps (changing the local state to a new state, the same for all nodes)
 - all steps are receive actions (receiving the same message), or
 - all steps are send actions (sending the same message)

- Therefore the resulting configuration C' is again symmetric

- We can repeat this forever, never reaching a state where there is exactly one leader

- This is called a symmetry argument
Peterson’s protocol: leader election on a ring

- **Bidirectional communication**
 - Nodes can send messages clockwise and anticlockwise

- **Idea: algorithm proceeds in rounds**
 - First round all n nodes are *active* and participate
 - If a round starts with k participants, at least $k/2$ and at most $k - 1$ will be eliminated (and become *passive*)
 - If a round start with 1 participant, it will declare itself leader at the end of the round
Peterson’s protocol: leader election on a ring

- The protocol for node i

 $C[i].active = true$
 $C[i].leader = false$
 while true /* new round */
 do if $C[i].active == true \land C[i].leader == false$
 send left $C[i].id$
 send right $C[i].id$
 receive right rightid
 receive left leftid
 if $(C[i].id == leftid) \land (C[i].id == rightid)$
 $C[i].leader = true$
 else if $(C[i].id < leftid) \lor (C[i].id < rightid)$
 $C[i].active = false$
 else /* passive or leader */
 receive right id ; send left id
 receive left id ; send right id
Peterson’s protocol

- Why does it work?

- What is the message / round complexity?

- What if message passing is not FIFO?
\[C[i].active = true \]
\[C[i].leader = false \]

\textbf{while true /* new round */ do if} \[C[i].active == true \land C[i].leader == false \]
\textbf{send left} \[C[i].id \]
\textbf{send right} \[C[i].id \]
\textbf{receive right} \[\text{rightid} \]
\textbf{receive left} \[\text{leftid} \]
\textbf{if} \[(C[i].id == \text{leftid}) \land (C[i].id == \text{rightid}) \]
\[C[i].leader = true \]
\textbf{else if} \[(C[i].id < \text{leftid}) \lor (C[i].id < \text{rightid}) \]
\[C[i].active = false \]
\textbf{else /* passive or leader */ do receive right} \[\text{id} \]; \textbf{send left} \[\text{id} \]
\textbf{receive left} \[\text{id} \]; \textbf{send right} \[\text{id} \]
Peterson’s protocol: leader election on a ring

- **There are at most** $\log n$ **rounds**
 - Node can only survive (remain active) if both its left and right active neighbour are smaller
 - Therefore at most half of the nodes can survive

- **In every round** $2n$ **messages are sent**
 - An active or passive node sends exactly 2 messages in each round

- **So: message complexity is at most** $2n \log n$
Peterson’s protocol: leader election on a ring

- **There are at most** \(\log n \) **rounds**
 - Node can only survive (remain active) if both its left and right active neighbour are smaller
 - Therefore at most half of the nodes can survive

- **In every round** \(2n \) **messages are sent**
 - An active or passive node sends exactly 2 messages in each round

- **So: message complexity is at most** \(2n \log n \)

```c
C[i].active = true
C[i].leader = false
while true /* new round */
  do if C[i].active == true \&\& C[i].leader == false
      send left C[i].id
      send right C[i].id
      receive right rightid
      receive left leftid
      if (C[i].id == leftid) \&\& (C[i].id == rightid)
        C[i].leader = true
      else if (C[i].id < leftid) \lor (C[i].id < rightid)
        C[i].active = false
      else /* passive or leader */
        receive right id; send left id
        receive left id; send right id
```
Peterson’s protocol: leader election on a ring

- **There are at most** \(\log n \) **rounds**
 - Node can only survive (remain active) if both its left and right active neighbour are smaller
 - Therefore at most half of the nodes can survive

- **In every round** \(2n \) **messages are sent**
 - An active or passive node sends exactly 2 messages in each round

- **So: message complexity is at most** \(2n \log n \)

```plaintext
C[i].active = true
C[i].leader = false
while true /* new round */
do if C[i].active == true ∧ C[i].leader == false
  send left C[i].id
  send right C[i].id
  receive right rightid
  receive left leftid
  if (C[i].id == leftid) ∧ (C[i].id == rightid)
    C[i].leader = true
  else if (C[i].id < leftid) ∨ (C[i].id < rightid)
    C[i].active = false
  else /* passive or leader */
    receive right id; send left id
    receive left id; send right id
```