Advanced Network Security

2. Distributed Algorithms: Leader Election

Jaap-Henk Hoepman

Digital Security (DS)
Radboud University Nijmegen, the Netherlands
@xotoxot // ⚡ jhh@cs.ru.nl // ☑ www.cs.ru.nl/~jhh
Leader election: motivation

- IBM token ring (1970)
 - For local area network
 - Single token traversing ring
 - Station with token was allowed to send

- How to
 - Start the network?
 - 0 tokens
 - Recover from an error?
 - >1 tokens
Leader election (1)

- **Given a graph** \(G = (V, E) \) of nodes, design a protocol that will elect a single node as leader.

- **Output stored in local variable** \(C[i].leader \)
 - There is one node \(i \) with \(C[i].leader = true \)
 - For all \(j \in V, j \neq i \) we have \(C[i].leader = false \)

- **Assumptions**
 - \(G \) is connected, i.e. nodes can reach each other; we assume a bidirectional ring network here
 - Nodes have unique identifiers \(C[i].id \)
 - *E.g. a MAC address*
 - *Note that nodes do NOT know \(V \) (i.e. the set of identities in the graph)*
 - All nodes simultaneously start the protocol
Leader election (2)

Requirements

- Correctness: at most one leader is elected (and once elected stays elected).
- Progress: eventually a leader is elected.

Leader election used, for example to

- Recover from errors (the leader coordinates the repair)
- Initiate another higher-level distributed algorithm
How would/could you solve this?

point-to-point message passing

\[i \rightarrow \{ i,j,k \} \]

\[\{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]

\[i \rightarrow \{ i,j,k \} \]

\[\text{FIFO} \]
Some non-solutions

- **Node i with $C[i].id = 0$ becomes leader**
 - May not exist. E.g. if identifiers are based on MAC addresses

- **Consider the following protocol for node i**

 Send clockwise (right) $C[i].id$
 Receive counterclockwise (left) id
 $C[i].leader = (C[i].id < id)$

 - This protocol assumes that $C[i].id = i$, i.e. assigned increasing along the ring, this is not necessarily the case
LeLann’s protocol: leader election on a ring

Assumption
- FIFO message passing and unique identifiers
- Note: nodes do *not* know the size of the ring
- Unidirectional communication (clockwise only)

Protocol for node \(i \)

\[
I_i = \emptyset \\
C[i].leader = false \\
\text{send right} \ C[i].id \\
\text{while } \ C[i].id \not\in I_i \\
\text{do receive left} \ id \\
\quad I_i = I_i \cup \{id\} \\
\quad \text{send right} \ id \\
C[i].leader = (C[i].id = \min_{j \in I_i})
\]

Election point
LeLann

- Why does this work?

- What is the message / round complexity?
 - single message has constant size $= O(\log N)$
 - # messages: $O(N)$ for a single node \Rightarrow total message complexity is $O(N^2)$

- What if message passing is not FIFO?
Why does this work?

\[I = \emptyset \]
\[C[i].leader = false \]
\[\text{send right} \ C[i].id \]
\[\text{while} \ C[i].id \notin I \]
\[\text{do receive left} \ id \]
\[I = I \cup \{id\} \]
\[\text{send right} \ id \]
\[C[i].leader = (C[i].id = \min_{j \in I} j) \]
What is the message / round complexity?

\[
I = \emptyset \\
C[i].leader = false \\
\textbf{send} \text{ right} \ C[i].id \\
\textbf{while} \ C[i].id \notin I \\
\textbf{do receive} \text{ left} \ id \\
\quad I = I \cup \{id\} \\
\quad \textbf{send} \text{ right} \ id \\
C[i].leader = (C[i].id = \min_j j \in I)
\]
LeLann

Why does this work?
- See proof further on

What is the message / round complexity?
- Every node forwards messages until it receives it’s own id back.
- If the size of the ring is n, each node sends n + 1 messages
- Total number of messages sent it n(n + 1)
- Round complexity is n

What if message passing is not FIFO?
- Homework ;-)
Le Lann: proof

- Proof obligations
 - Correctness
 - Progress

\[I = \emptyset \]
\[C[i].leader = false \]
\[\text{send right } C[i].id \]
\[\text{while } C[i].id \notin I \]
\[\text{do receive left } id \]
\[I = I \cup \{id\} \]
\[\text{send right } id \]
\[C[i].leader = (C[i].id = \min_{j \in I} j) \]
LeLann proof of correctness (1)

- **Correctness**: at most one leader is elected (and once elected stays elected).

 - We need to prove that for all nodes i,j that reach the election point, we have $l_i = l_j$. Then the result follows as nodes have unique identifiers.

 - In fact we will show that we have $l_i = l_j = \{C[k]. id|k \in [0,n-1]\}$ (nodes are numbered clockwise around the ring, and n is the number of nodes – which is unknown to the number of nodes!)

 - In what follows, let l_i be the list of values, in the order in which they were received (instead of a set).
LeLann proof of correctness (1)

[correctness proof continued]

- We prove this using induction on the r-th message node i receives; in fact we show that when node i receives the r-th message, it actually received $I_i = (C[i - 1 \mod n].id, ..., C[i - r \mod n].id)$ in that order.
- For round $r = 0$ (i.e. initially) the statement holds trivially: no messages have been received so far and $I_i = \emptyset$
LeLann proof of correctness (2)

[correctness proof continued]

- For round \(r' = r + 1 \) observe
 - All message received by node \(i \) by round \(r' = r + 1 \) must have been sent by its left hand neighbour \(j = i - 1 \mod n \) in or before round \(r \).
 - At the end of round \(r \) node \(j \) has sent all values in \(I_j \) to \(i \), in the same order, but first sent out \(C[j].id \).
 - Because of the FIFO property node \(i \) receives these in the same order.
 - Using the induction hypothesis \(I_j = C[j - 1 \mod n].id, ... , C[j - r \mod n] \) in that order.
 - Then \(i \) receives \(C[j].id, ... , C[j - r \mod n] = C[i - 1 \mod n].id, ... , C[i - r'].id \) in that order as required.
LeLann proof of correctness (3)

[correctness proof continued]

- If node i reaches the election point then $C[i].id \in I_i$
- This happens when the r-th message node i receives (so $r > 0$), i.e. the message $C[k].id$ with $k = i - r \mod n$, equals $C[i].id$.
- As identities on the ring are unique, this implies $k = i$ and so $r = n$ and hence, $I_i = (C[i - 1 \mod n].id, \ldots, C[i - n \mod n].id)$
- In other words $I_i = \{C[k].id | k \in 0, n - 1\}$ as required.
LeLann proof of correctness (3)

Progress: eventually a leader is elected.

- Let node i have the smallest $C[i].id$
- Initially node i sends $C[i].id$ to its right-hand neighbour
- This means a message $C[i].id$ is either in transit on a link (meaning the next node will eventually receive it) or received by the node (meaning it will be sent out to the right by that node)
- Whenever this message is sent, it moves one step closer back to node i
- Eventually node i receives $C[i].id$ (and sends it once more the right) and then stops
- It determines that $(C[i].id = \min_i i \in I)$ and hence becomes leader as required
What if nodes do not have unique identifiers?
What if nodes do not have unique identifiers?

- Then there exists a symmetric configuration C
 - where all nodes have the same state, and all edges have the same state
 - I.e. either all nodes are leaders, or no node is leader

- Starting in C let all nodes take a step (the same) in turn, then
 - all steps are local steps (changing the local state to a new state, the same for all nodes)
 - all steps are receive actions (receiving the same message), or
 - all steps are send actions (sending the same message)

- Therefore the resulting configuration C' is again symmetric

- We can repeat this forever, never reaching a state where there is exactly one leader

- This is called a symmetry argument
Peterson’s protocol: leader election on a ring

- **Bidirectional communication**
 - Nodes can send messages clockwise and anticlockwise

- **Idea: algorithm proceeds in rounds**
 - First round all n nodes are *active* and participate
 - If a round starts with k participants, at least $k/2$ and at most $k - 1$ will be eliminated (and become *passive*)
 - If a round start with 1 participant, it will declare itself leader at the end of the round

Start with N nodes: you are guaranteed to find a leader in $\log(N)$ rounds
Peterson’s protocol: leader election on a ring

The protocol for node i

```plaintext
C[i].active = true
C[i].leader = false

while true /* new round */
do
    if $C[i].active == true \land C[i].leader == false$
        send left $C[i].id$
        send right $C[i].id$
        receive right rightid
        receive left leftid
        if ($C[i].id == leftid) \land (C[i].id == rightid)$
            $C[i].leader = true$
        else if ($C[i].id < leftid) \lor (C[i].id < rightid)$
            $C[i].active = false$
        else /* passive or leader */
            receive right id; send left id
            receive left id; send right id
```

Peterson’s protocol

- Why does it work?

- What is the message / round complexity?

- What if message passing is not FIFO?

C[i].active = true
C[i].leader = false
while true /* new round */
do if C[i].active == true ∧ C[i].leader == false
 send left C[i].id
 send right C[i].id
 receive right rightid
 receive left leftid
 if (C[i].id == leftid) ∧ (C[i].id == rightid)
 C[i].leader = true
 else if (C[i].id < leftid) ∨ (C[i].id < rightid)
 C[i].active = false
 else /* passive or leader */
 receive right id; send left id
 receive left id; send right id
$C[i].active = true$
$C[i].leader = false$

while true /* new round */
do if $C[i].active == true \land C[i].leader == false$
 send left $C[i].id$
 send right $C[i].id$
 receive right $rightid$
 receive left $leftid$
 if $(C[i].id == leftid) \land (C[i].id == rightid)$
 $C[i].leader = true$
 else if $(C[i].id < leftid) \lor (C[i].id < rightid)$
 $C[i].active = false$
else /* passive or leader */
 receive right id; send left id
 receive left id; send right id
Peterson’s protocol: leader election on a ring

- **There are at most** $\log n$ **rounds**
 - Node can only survive (remain active) if both its left and right active neighbour are smaller
 - Therefore at most half of the nodes can survive

- **In every round** $2n$ **messages are sent**
 - An active or passive node sends exactly 2 messages in each round

- **So: message complexity is at most** $2n \log n$

```plaintext
C[i].active = true
C[i].leader = false
while true /* new round */
do if (C[i].active == true ∧ C[i].leader == false)
    send left C[i].id
    send right C[i].id
    receive right rightid
    receive left leftid
    if (C[i].id == leftid) ∧ (C[i].id == rightid)
        C[i].leader = true
    else if (C[i].id < leftid) ∨ (C[i].id < rightid)
        C[i].active = false
    else /* passive or leader */
        receive right id; send left id
        receive left id; send right id
```
Peterson’s protocol: leader election on a ring

- **There are at most** $\log n$ **rounds**
 - Node can only survive (remain active) if both its left and right active neighbour are smaller
 - Therefore at most half of the nodes can survive

- **In every round** $2n$ **messages are sent**
 - An active or passive node sends exactly 2 messages in each round

- **So: message complexity is at most** $2n \log n$

```plaintext
C[i].active = true
C[i].leader = false
while true /* new round */
do if C[i].active == true ∧ C[i].leader == false
   send left C[i].id
   send right C[i].id
   receive right rightid
   receive left leftid
   if (C[i].id == leftid) ∧ (C[i].id == rightid)
      C[i].leader = true
   else if (C[i].id < leftid) ∨ (C[i].id < rightid)
      C[i].active = false
   else /* passive or leader */
      receive right id; send left id
      receive left id; send right id
```