Advanced Network Security

3. Distributed Algorithms: Mutual Exclusion

Jaap-Henk Hoepman

Digital Security (DS)
Radboud University Nijmegen, the Netherlands
@xotoxot // ⚡ jhh@cs.ru.nl // 🌐 www.cs.ru.nl/~jhh
Victorian swimming pool
Mutual exclusion

- Suppose nodes occasionally need access to a shared resource, but accessing it simultaneously creates problems
 - E.g. printing a document, updating a record in shared memory

- We need a protocol that allows nodes to request access, and that guarantees that such nodes eventually get exclusive access.
 - Nodes call `enter()` to request access
 - Nodes call `exit()` to release the resource

```plaintext
while true
do enter()
   /* critical section */
extit()
   /* non critical section aka remainder section */
```
Mutual exclusion

- **A mutual exclusion protocol has the following properties**
 - **Mutual exclusion**: there is at most one node in the *critical section*
 - **Progress**: if there is at least one node enters, and the critical section is empty, then one of these nodes will eventually get access to the critical section
 - **No starvation**: if a node enters, and if all nodes that get access to the critical section release it, then it will eventually get access

- **Assumption:**
 - a fair scheduler, and
 - atomic shared variables
How could you solve mutual exclusion?

- **Enter**
 - atomic
 - while $i = 0$ do (wait)
 - $c := c - 1$

- **Share**
 - i
 - integer
 - # of allowed

- **Exit**
 - $i := i + 1$

The diagram illustrates a situation where two processes, labeled a and b, attempt to enter a critical section (C.S.) simultaneously. The process labeled a sets $i := 1$, while the process labeled b sets $i := 0$. However, this does not work because both processes cannot enter the critical section at the same time.

- $i := i - 1$
- $i > 0$

Both processes are blocked until one allows the other to proceed, indicating the need for a mutual exclusion mechanism to prevent this race condition.
Mutual exclusion using message passing (1)

- Using logical clocks [Lamport]
 - Every message m carries a timestamp T_m (equal to the logical clock value $C_i(a)$ of the send event a)
 - Recall this induces a total order \Rightarrow
 - Every node maintains a request queue of $\langle timestamp, node \rangle$ pairs ordered by \Rightarrow as well, initially $\langle -1,0 \rangle$ for each node
 - As we will see later, this means node 0 initially holds the resource
Mutual exclusion using message passing (2)

Rules

- (1) To request a resource, node i sends a request message to all other nodes, including itself. These messages include a timestamp.
- (2) When a node j receives a request message with timestamp T_m from node i:
 - (i) Node j adds (T_m, i) to its request queue.
 - (ii) Node j sends a (timestamped) acknowledgement message back to i.
- (3) To release a resource, node i sends a release message to all other nodes, including itself.
- (4) When a node j receives a release message with (timestamp T_m) from node i it removes any $(*, i)$ messages from its request queue.
- (5) A node i is granted access to the resource if
 - (i) Node i’s request queue contains (T, i) ordered (using \Rightarrow) before any other elements (T', j) in the request queue.
 - (ii) Node i has received a message from all other nodes with a timestamp $T'' > T$.
The protocol in action

\[
\left\langle 10, i \right\rangle
\]
Why does this work? (1)

- Mutual exclusion
Why does this work? (1)

- **Mutual exclusion**
 - Rule 1 and 2 ensure that resource requests are added to all queue’s
 - 5.ii guarantees that a node must have learned about earlier requests before honouring its own
 - Requests are only removed from the queue when the corresponding node releases it (and sends release messages to all nodes) due to rule 3 and 4
Why does this work? (2)

- Progress

- No starvation

If we use leaders

One Request Queue

\(\text{leader} \)

\(\text{crashers} \)

\(\Rightarrow \text{system freezes} \)

- If a node crashes while entering, exiting or in the C.S.
- If a node crashes in the remainder section

\(\Rightarrow \text{system stays alive} \)

 Logical clocks
Why does this work? (2)

- **Progress:** in fact, requests are honoured in the order in which they are made
 - Follows from the fact that \Rightarrow extends \rightarrow, requests (T, i) are ordered by \Rightarrow and served in that order because of rule 5.i and the above

- **No starvation:** every request is eventually honoured
 - For every request, a node receives an acknowledgement (rule 2), hence rule 5.ii is eventually satisfied
 - If every node eventually releases the resource, then rule 3 and 4 guarantee that eventually any older timestamps are removed from the request queue
Mutual exclusion with shared memory

- An easy solution...

\[
\text{testandset}(x) \quad \text{return } x
\]
\[
\text{if } x=0 \text{ then } x=1 \quad \text{One atomic operation}
\]

\[
\text{while } \neg \text{testandset}(x) \text{ do wait}
\]
\[
(\# \text{critical section } x)
\]
Mutual exclusion with normal shared memory: first try

- Two shared variables
 - $flag_0$ written by 0 and read by 1
 - $flag_1$ written by 1 and read by 0

- Protocol

 \[
 flag_i = \text{false} \\
 \text{while true} \\
 \quad \text{while } flag_{1-i} \text{ do } /* \text{wait} */ \\
 \quad \quad flag_i = \text{true} \\
 \quad /* \text{critical section} */ \\
 \quad flag_i = \text{false}
 \]

- What can go wrong?

- What if we first set the flags, before testing their value?
Mutual exclusion: Lamport’s bakery algorithm

- Each node i maintains two shared variables that it writes and that all other nodes can read
 - $C[i].num$, unbounded
 - $C[i].choosing$

- **Idea: take numbered ticket like in the bakery**
 - Except that you have to ask everyone in the shop what their number is, and take the maximum $+ 1$
 - And you should wait for people that haven’t picked a number yet

- Lowest number is next allowed in the critical section
Mutual exclusion: Lamport’s bakery algorithm

\[\text{num}[i] = 0 \]
\[\text{choosing}[i] = \text{false} \]

\textbf{while true}
\begin{align*}
&\text{do}
&\text{choosing}[i] = \text{true}
&\text{num}[i] = 1 + \max_j \text{num}[j]
&\text{choosing}[i] = \text{false}
&\textbf{for} \ j \neq i
&\text{do while choosing}[j] \textbf{ do} /* wait */
&\text{while} \ (\text{num}[j] > 0) \land ((\text{num}[j], j) < (\text{num}[i], i)) \textbf{ do} /* wait */
&\text{/* critical section */}
&\text{num}[i] = 0
\end{align*}
Proof of bakery algorithm: mutual exclusion

- **Lemma 1:** If i in C.S. and there is a k s.t. $\text{num}[k] \neq 0$ then
 $$(\text{num}[k], k) > (\text{num}[i], i)$$

 - i checked status of k in for/while loop, at which point either
 - $\text{num}[k] = 0$ (or $(\text{num}[k], k) > (\text{num}[i], i)$ already)
 - So somewhere $\text{num}[k]$ became $\neq 0$

```
node k

write num[k] when ticket value computed when entering

read choosing[k] = false also in the test to enter C.S.

write num[k]
```

```
node i

write num[i]

read num[k] (when i sees num[k] = 0)
in the test to enter C.S.

read num[k]

read value written by i when entering

written ticket value must be bigger than this.

i in C.S. with num[k] #0
```
Proof of bakery algorithm: mutual exclusion

Lemma 1: if \(i\) in C.S. and there is a \(k\) s.t. \(\text{num}[k] \neq 0\) then \((\text{num}[k], k) > (\text{num}[i], i)\)

- Before entering, node \(i\) first waited until \(\text{choosing}[k] = \text{false}\) and then waited until either \((\text{num}[k] = 0)\) or \(((\text{num}[k], k) > (\text{num}[i], i))\)

- If at that time \(\text{num}[k] = 0\), then by assumption that now \(\text{num}[k] \neq 0\), node \(k\) must have changed \(\text{num}[k]\) after node \(i\) read it (i.e. \(\text{read num}[k] \rightarrow \text{write num}[k]\)). Node \(i\) set its current value of \(\text{num}[i]\) before reading \(\text{choosing}[k] = \text{false}\) and reading \(\text{num}[k]\) (i.e. \(\text{write num}[i] \rightarrow \text{read choosing}[k] = \text{false} \rightarrow \text{read num}[k]\)). But node \(k\) sets \(\text{choosing}[k] = \text{true}\) before reading \(\text{num}[i]\) and writing \(\text{num}[k]\) (i.e. \(\text{write choosing}[k] = \text{true} \rightarrow \text{read num}[i] \rightarrow \text{write num}[k]\)).

- This can only happen if \(\text{read choosing}[k] = \text{false} \rightarrow \text{write choosing}[k] = \text{true}\). Hence \(\text{write num}[i] \rightarrow \text{read num}[i]\) so node \(k\) must have seen this value for \(\text{num}[i]\) when computing a ticket. By the protocol \(k\) sets \(\text{num}[k]\) to a larger value

- If instead \((\text{num}[k], k) > (\text{num}[i], i)\) then either node \(k\) did not change the value, or it entered again and by the same argument as above sets \(\text{num}[k]\) to a larger value
Proof of bakery algorithm: mutual exclusion

- **Lemma 1:** if \(i \) in C.S. and there is a \(k \) s.t. \(\text{num}[k] \neq 0 \) then \((\text{num}[k], k) > (\text{num}[i], i)\)

- **Lemma 2:** for all \(i \), \(\text{num}[i] \geq 0 \)
 - Follows from the protocol

- **Lemma 3:** if \(i \) in C.S. then \(\text{num}[i] > 0 \)
 - Follows from lemma 2 and the fact that \(i \) chooses \(\text{num}[i] = 1 + \max_j \text{num}[j] \)

- **Theorem:** the bakery protocol satisfies mutual exclusion
 - Suppose not. Then for \(i \neq j \) we have \(\text{num}[i] > 0 \) and \(\text{num}[j] > 0 \) by lemma 3 and then both \((\text{num}[i], i) > (\text{num}[j], j)\) and \((\text{num}[j], j) > (\text{num}[i], i)\) by lemma 1. A contradiction.
Proof of bakery algorithm: progress

- Suppose C.S. is empty and there are nodes entering
 - Note: the exit() protocol will eventually be completed
- Every node that enters gets a ticket
- Let \(i \) be the node with minimal \((num[i], i)\)
- It will never see nodes with smaller tickets
- It only needs to wait for nodes that choose, but these always complete after some number of steps (non blocking operation)
- It eventually enters the C.S., so we have progress.
Proof of bakery algorithm: no starvation

- In general we have that if progress holds, and if any node i is waiting at most a finite number of other nodes can enter the C.S, then no starvation holds.

- Lemma 4: Let i have a ticket. Any node entering after that will have a bigger ticket. Hence at most $n - 1$ nodes can have a smaller ticket and beat node i.

- Because progress holds and lemma 4 holds, no starvation then also holds.