Advanced Network Security

3. Distributed Algorithms:
Mutual Exclusion

Jaap-Henk Hoepman

Digital Security (DS)
Radboud University Nijmegen, the Netherlands
@xotoxot // 📧 jhh@cs.ru.nl // 🌐 www.cs.ru.nl/~jhh
Advanced Network Security

3. Distributed Algorithms: Mutual Exclusion

Jaap-Henk Hoepman

Digital Security (DS)
Radboud University Nijmegen, the Netherlands
@xotoxot // jhh@cs.ru.nl // www.cs.ru.nl/~jhh
Victorian swimming pool
Mutual exclusion

- Suppose nodes occasionally need access to a shared resource, but accessing it simultaneously creates problems
 - E.g. printing a document, updating a record in shared memory

- We need a protocol that allows nodes to request access, and that guarantees that such nodes eventually get exclusive access.
 - Nodes call `enter()` to request access
 - Nodes call `exit()` to release the resource

```java
while true
  do enter()
/* critical section */
  exit()
/* non critical section */
```
Mutual exclusion

- A mutual exclusion protocol has the following properties
 - **Mutual exclusion**: there is at most one node in the critical section
 - **Progress**: if there is at least one node enters, and the critical section is empty, then one of these nodes will eventually get access to the critical section
 - **No starvation**: if a node enters, and if all nodes that get access to the critical section release it, then it will eventually get access

- **Assumption**:
 - a fair scheduler, and
 - atomic shared variables
Properties (graphically)

- Mutual exclusion
- Waiting room
- Critical resource
- At most 1

- Progress

- No starvation
Mutual exclusion using message passing (1)

- Using logical clocks [Lamport]
 - Every message m carries a timestamp T_m (equal to the logical clock value $C_i(a)$ of the send event a)
 - Recall this induces a total order \Rightarrow
 - Every node maintains a request queue of $(timestamp, node)$ pairs ordered by \Rightarrow as well, initially $<-1,0>$ for each node
 - I.e. node 0 initially holds the resource
Mutual exclusion using message passing (2)

Rules

- (1) To request a resource, node i sends a request message to all other nodes, including itself.
- (2) When a node j receives a request message with timestamp T_m from node i
 - (i) Node j adds (T_m, i) to its request queue.
 - (ii) Node j sends a (timestamped) acknowledgement message back to i.
- (3) To release a resource, node i sends a release message to all other nodes, including itself.
- (4) When a node j receives a release message with (timestamp T_m) from node i it removes any (\ast, i) messages from its request queue.
- (5) A node i is granted access to the resource if
 - (i) Node i’s request queue contains (T, i) ordered (using \Rightarrow) before any other elements (T', j) in the request queue.
 - (ii) Node i has received a message from all other nodes with a timestamp $T'' > T$.

Rules
node

∅

\langle T, j \rangle → \text{release}
\langle T', k \rangle → \text{release}

\rightarrow \langle T'', r \rangle

\text{request queue}
Why does this work? (1)

- Mutual exclusion
 - Rule 1 and 2 ensure that resource requests are added to all queue’s
 - 5.ii guarantees that a node must have learned about earlier requests before honouring its own
 - Requests are only removed from the queue when the corresponding node releases it (and sends release messages to all nodes) due to rule 3 and 4
Why does this work? (2)

- **Progress:** in fact, requests are honoured in the order in which they are made
 - Follows from the fact that ⇒ extends →, requests \((T, i) \) are ordered by ⇒ and served in that order because of rule 5.i and the above

- **No starvation:** every request is eventually honoured
 - For every request, a node receives an acknowledgement (rule 2), hence rule 5.ii is eventually satisfied
 - If every node eventually releases the resource, then rule 3 and 4 guarantee that eventually any older timestamps are removed from the request queue
Mutual exclusion with shared memory: the easy solution

- Use test-and-set / read-modify-write

```c
read-modify-write (R, f)
    tmp ← R
    R ← f(tmp)
    return tmp;
```

Update function

```
Rmw(R)  |
\underline{\text{variable}}  \quad R
```

```
i
j
```

```
\[ R_{mw}(R) \]
```

```
\[ R_{mw}(R) \]
```
In process mutual exclusion

- read-modify-write
 (test-and-set)
- return value
 (if value = 0 then set it to 1)
- reset

\[
\text{while true do} \\
\text{while read-modify-write (R1 = 1) do} \\
(\ast C.S. \ast) \\
\text{read} (R) \\
(\ast R.S. \ast) \\
\text{no starvation not guaranteed !!}
\]
Mutual exclusion with normal shared memory: first try

- **Two shared variables**
 - $flag_0$ written by 0 and read by 1
 - $flag_1$ written by 1 and read by 0

- **Protocol**

 $flag_i = false$

  ```
  while true
    while $flag_{1-i}$ do /* wait */
      $flag_i = true$
    /* critical section */
      $flag_i = false$
  ```

- **What can go wrong?**
- **What if we first set the flags, before testing their value?**
Mutual exclusion: Lamport’s bakery algorithm

- Each node i maintains two shared variables that it writes and that all other nodes can read
 - $C[i].num$, unbounded
 - $C[i].choosing$

- Idea: take numbered ticket like in the bakery
 - Except that you have to ask everyone in the shop what their number is, and take the maximum + 1
 - And you should wait for people that haven’t picked a number yet

- Lowest number is next allowed in the critical section
Mutual exclusion: Lamport’s bakery algorithm

num[i] = 0
choosing[i] = false
while true
do
 choosing[i] = true
 num[i] = 1 + \max_j num[j]
 choosing[i] = false
 for j ≠ i
do while choosing[j] do /* wait */
 while (num[j] > 0) ∧ ((num[j], j) < (num[i], i)) do /* wait */
/* critical section */
num[i] = 0

Compute your ticket; This involves n independent reads!
Proof of bakery algorithm: mutual exclusion

Lemma 1: if i in C.S. and there is a k s.t. $\text{num}[k] \neq 0$ then $(\text{num}[k], k) > (\text{num}[i], i)$

- Before entering i first waited until $\text{choosing}[k] = \text{false}$ and then waited until either $(\text{num}[k] = 0)$ or $((\text{num}[k], k) > (\text{num}[i], i))$

- If $\text{num}[k] = 0$, then by assumption that now $\text{num}[k] \neq 0$, node k must have changed $\text{num}[k]$ after node i read it (i.e. read $\text{num}[k] \rightarrow \text{write} \text{num}[k]$). Node i set its current value of $\text{num}[i]$ before reading $\text{choosing}[k] = \text{false}$ and reading $\text{num}[k]$ (i.e. write $\text{num}[i] \rightarrow \text{read} \text{choosing}[k] = \text{false} \rightarrow \text{read} \text{num}[k]$). But node k sets $\text{choosing}[k] = \text{true}$ before reading $\text{num}[i]$ and writing $\text{num}[k]$ (i.e. write $\text{choosing}[k] = \text{true} \rightarrow \text{read} \text{num}[i] \rightarrow \text{write} \text{num}[k]$).

- This can only happen if $\text{read} \text{choosing}[k] = \text{false} \rightarrow \text{write} \text{choosing}[k] = \text{true}$. Hence write $\text{num}[i] \rightarrow \text{read} \text{num}[i]$ so node k must have seen this value for $\text{num}[i]$ when computing a ticket. By the protocol k sets $\text{num}[k]$ to a larger value

- If $(\text{num}[k], k) > (\text{num}[i], i)$ then either node k did not change the value, or it entered again and by the same argument as above sets $\text{num}[k]$ to a larger value
Proof of bakery algorithm: mutual exclusion

- **Lemma 1:** if i in C.S. and there is a k s.t. $num[k] \neq 0$ then $(num[k], k) > (num[i], i)$

- **Lemma 2:** for all i, $num[i] \geq 0$
 - Follows from the protocol

- **Lemma 3:** if i in C.S. then $num[i] > 0$
 - Follows from lemma 2 and the fact that i chooses $num[i] = 1 + \max_j num[j]$

- **Theorem:** the bakery protocol satisfies mutual exclusion
 - Suppose not. Then for $i \neq j$ we have $num[i] > 0$ and $num[j] > 0$ by lemma 3 and then both $(num[i], i) > (num[j], j)$ and $(num[j], j) > (num[i], i)$ by lemma 1. A contradiction.
Proof of bakery algorithm: progress

- Suppose C.S. is empty and there are nodes entering
 - Note: the exit() protocol will eventually be completed

- Every node that enters gets a ticket

- Let i be the node with minimal $(num[i], i)$

- It will never see nodes with smaller tickets

- It only needs to wait for nodes that choose, but these always complete after some number of steps (non blocking operation)

- It eventually enters the C.S., so we have progress.
Proof of bakery algorithm: no starvation

- In general we have that if progress holds, and if any node i is waiting at most a finite number of other nodes can enter the C.S, then no starvation holds.

- Lemma 4: Let i have a ticket. Any node entering after that will have a bigger ticket. Hence at most $n - 1$ nodes can have a smaller ticket and beat node i.

- Because progress holds and lemma 4 holds, no starvation then also holds.
Proof of bakery algorithm: no starvation

- In general we have that if progress holds, and if any node i is waiting at most a finite number of other nodes can enter the C.S, then no starvation holds.

- Lemma 4: Let i have a ticket. Any node entering after that will have a bigger ticket. Hence at most $n - 1$ nodes can have a smaller ticket and beat node i.

- Because progress holds and lemma 4 holds, no starvation then also holds.