Consensus for Byzantine failures

- Remember: Byzantine processors may lie...
- What goes wrong in the protocol for crash failures?
 - If \(|\sigma| = f + 1 \) then there is a non faulty processor \(z \) with \(\sigma = \alpha; z; \beta \).
 - Then at round \(|\sigma| + 1 \) processor \(z \) sent \(v = v_z \) to \(q \) as well (as the first processor in \(\beta \)). By construction \(v_z = v_{\alpha} \) as the processors in \(\beta \) forward this value to each other to finally deliver it to \(p_3 \). Again \(v \in V_2 \).

Byzantine failures: \(f < n/3 \) is necessary

- Suppose \(n = 3 \) and \(f = 1 \)
 - a and b must decide 1
 - b and c must decide 1
 - a and c must decide 1

- Suppose \(n = 3 \) and \(f = 1 \)
 - a and b must decide 0
 - b and c must decide 0
 - a and c must decide 0
 - a and b see the same messages, yet c decides 0 as \(v \) saw the same messages.
A protocol tolerating $f < n/3$ byzantine failures

- Again each processor p builds the following tree T_p

![Diagram of a tree with levels labeled from 0 to $r+1$. Each level contains nodes with values, and arrows indicating parent-child relationships.]

- Lamport's OM protocol for building the tree

![Diagram illustrating the OM protocol with arrows and labels for message passing and value propagation.]

Byzantine failures: decision more complex

- Associate a decision value d'_p to each node in the tree
 - After tree is filled with values top down, it is filled with decision values bottom up
 - d'_p is the value for $C[p].decision$ that p decides on

- Define $\text{Majority}(S)$ be the value that occurs most in a set S, using some constant \bot to break ties

Lamport's OM protocol for building the tree

- We write $OM'_p(m, v)$ to make clear processor p executes this to propagate v and to keep track of "stack trace" m
 - $OM'_p(m, v)$ is executed by p for all σ s.t. $|\sigma| = f - m$ and $p \notin \sigma$
 - It sends $v = d'_p$ to all nodes q (as message $m^*_{p,q}$) stored by q as $v^*_{p,q}$, and instructs them to propagate the value through recursion
 - It essentially builds p's part of the subtrees rooted at v for all processors, together with the other $OM'_p(\cdot, \cdot)$ the whole subtrees rooted
 - The protocol starts with $OM'_p(\cdot, C[p].in)$ for all p
Lamport's OM protocol

- OM₀(0, 0)
- Send v₀ as m₀₀ to all q
- All processors q that receive it set v₀ = m₀₀; set ⊥ if no value received
- Set d₀ = Majority(v₀, q ∉ σ)

- OMₙₙₑ(ₙₙₑ, 0) for 0 ≤ n ≤ f
- Send v as m₀₀ to all q
- All processors q that receive it set v₀ = m₀₀; set ⊥ if no value received
- Trigger OM₀(ₙₙₐ, 4) for all q ∉ σ

Start as OM₀(₀, 0, 4) for all p
- Store v₀₀ in m₀ₐ

A protocol tolerating \(f < \frac{n}{3} \) byzantine failures

- Again each processor \(p \) builds the following tree \(T_p \)

One step in detail
So building the tree is the same protocol as for crash failures.

- **Before round 1**
 - Initialise tree. Set all $v^0 = -1$ and $v^K = C(p)$ in

- **Round** $r, 1 \leq r \leq f + 1$
 - For all σ with $|\sigma| = r - 1, p \notin \sigma$, send v^K to all processors q (including p)
 - Call this message m^*_{q}
 - Receive all m^*_{q} addressed to p and store in v^0 for
 - By the protocol $x \notin \sigma$ so p receives $n - (r - 1)$ such messages from each x

Deciding on a value

- **Work from the leaves upwards**
 - $d^0 = v^0$ for $|\sigma| = f + 1$
 - $d^0 = \text{Majority}(v^0_{q} | q \notin x)$ otherwise
 - Node p decides on d^K

Correctness

- **Lemma 1**: If p, q, r are non faulty, then for all σ we have $v^K_{p, q} = v^K_{r}$
 - If r is non faulty, it sends the same value to p and q

- Set $d^K = v^K$ for all leaves, ie $|\sigma| = f + 1$
Correctness

Lemma 1: If \(p \in r \) are non faulty, then for all \(n \) we have \(c^n_p = c^n_r \).

Lemma 2: Let \(v \) be arbitrary and let \(r \) be non faulty. Then there is a value \(v \) such that for all non faulty \(p \) we have \(d^n_r = d^n_p = v \).

- By induction on the length of \(p \); starting with the leaves (length \(f + 1 \))

- The base case follows from lemma 1 and the fact that for \(|p \cap r| = f + 1 \) we have \(c^n_p = c^n_r \).

- Now suppose \(0 < |p \cap r| < f + 1 \). By lemma 1, all non faulty processors have \(d^n_p = v \). Then all non faulty processors \(p \neq r \) send \(v \) to all other processors \(q \). If non faulty, \(q \) sets \(c^n_q = v \).

- By the induction hypothesis we have \(c^n_{r_1} = c^n_{r_2} = v \) for all non faulty \(q \).

- The number of children of a node with label \(x \) is \(n - |p \cap r| \geq n - f - 2f / m \).

- Hence the majority of children is non faulty, and so \(d^n_r = \text{Majority}(c^n_{r_1}, c^n_{r_2} | q \neq q) = v \) as required.

Lemma 2

Base case \(|p \cap r| = f + 1 \)

Induction \(|p \cap r| = f + 1 < f + 1 \)

Validity

Theorem: If all non faulty processors have input \(v \) they decide on \(v \).

- If all non faulty processors have input \(v \), they send \(v \) to all other nodes in the first round. As a result \(c^0_p = v \) for all correct \(p \) and \(q \).

- By lemma 2, \(d^n_q = v \) for all correct \(p \) and \(q \); and hence \(d^n_r = \text{Majority}(d^n_q | \text{for all } q) = v \).
Agreement

Definition 1. \(\sigma \) is common if \(d_\sigma^p = d_\sigma^q \) for all pairs of non faulty \(p,q \).

Definition 2. A subset \(C \) of nodes in a tree \(T \) is a path cover of \(T \) if all paths from the leaves to the root visit at least one node in \(C \).

Definition 3. A path cover \(C \) is common if all nodes in \(C \) are common. (Note: this does not require \(d_\sigma^p = d_\sigma'^q \) for different \(\sigma, \sigma' \).)

Lemma 3. There exists a common path covering of the tree constructed by the consensus algorithm:

- All paths from the root to a leaf correspond to a label \(\sigma \) with length \(f = 2k \).
- Then \(\sigma = \sigma'; \sigma'' \) for some non faulty \(\sigma \).
- By lemma 2 \(d_\sigma^p = d_\sigma^q \) for all non faulty \(p,q \) and so \(\sigma; \sigma'' \) is common and on the path.

Lemma 4. Let \(\sigma \) be a node. If there is a common path covering of the subtree rooted at \(\sigma \), then \(\sigma \) is common itself.

- By induction on the length of \(\sigma \).
- For \(\sigma' = \sigma \) the lemma trivially follows.
- Let \(0 \leq |\sigma'| < f = 2k + 1 \) and assume there is a common path covering \(C \) of the subtree rooted at \(\sigma \). If \(\sigma \in C \) we are done. If not, then the trees rooted in all children have a common path covering and by the induction hypothesis then all children \(\sigma ; \sigma' \) of \(\sigma \) are common.

Hence \(d_\sigma^p = d_\sigma^q \) for all pairs of non faulty \(p,q \). Hence \(d_\sigma^p = \text{Majority}(d_\sigma^p, \sigma \not\in \sigma) \) and hence \(\sigma \) is common as well.

Theorem: All non faulty nodes decide on the same value

- Follows from lemma 3 and 4.
Using authentication

Signing messages

- Every processor p has a private signing key. The corresponding signature verification key is known to all processors.
- Let us write $[m]_p$ for a message m signed by p. Write $[m]_0$ for $[...[m]_0,...]$ with $s = p;...;r$
- Processors reject any messages with incorrect signatures.
 - Byzantine nodes cannot forge values pretending they heard another value from a correct processor
 - But they can send conflicting initial values in the first round!
- Now consider the weak broadcast protocol

(Binary) Broadcast (aka agreement)

- Sender p in round 1
 - If $c(p) = 1$ then send $[1]_p$ to all, otherwise stay silent
 - Decide on $c(p)$
- Other nodes q
 - For each round $r \in (1,...,f+1)$
 - If you receive a valid $[1]_r$ message (note $s = r$) with $s = p;...;r$ then send $[1]_r$ to all, decide on 1 and terminate
 - Decide on 0 and terminate
Correctness

- **Agreement**
 - Suppose a correct node decides on 1 in round r. This means it received a valid [1] message. If $r < f + 1$ then p sends a valid $[0]_{q} = [1]_{q}$ message to all correct q who therefore decide on 1 too. If $r = f + 1$ then p decides 1 hence $s = c'_v$ for some correct q that sent a valid $[1]_{q}$ message to all correct nodes that therefore decided on 1 in round $r = f + 1$.

- **Validity**
 - Suppose p is correct. Either it sends $[1]_{q}$ to all, and all correct nodes decide 1 in round 1. Or it does not send anything. As a result no correct node receives a valid [1] message, so all correct nodes decide 0 in round $f + 1$.

Reaching consensus

- Each node uses the broadcast algorithm to send its input value to all other nodes.
- All other nodes obtain (by the agreement property of the broadcast) the same vector of input values.
- All nodes decide on the majority of values in this vector (breaking ties in a deterministic way).
- If $f < n/2$ then if all nodes have the same input value, all nodes decide on this value.