Advanced Network Security

4. Self-stabilisation

Jaap-Henk Hoepman

Digital Security (DS)
Radboud University Nijmegen, the Netherlands
@xotoxot // jhh@cs.ru.nl // www.cs.ru.nl/~jhh
Self-stabilisation: a different failure model

Instead of (permanent) processing failures we study transient memory failures
- State of a node stored in RAM, which can be changed arbitrarily
- Program code stored in ROM, never changed

State of network can also change
- So study shared memory systems to simplify analysis
- But self-stabilisation in message passing systems is also possible
System model

- **n nodes**
 - Uniform (all with the same state) or non-uniform
 - With or without known node identifiers (stored in ROM, i.e. cannot change)

- **Communicating through shared memory**
 - Modelled through graph $G = (V, E)$
 - **State reading** model: $(v, w) \in E$ means w can read *entire* state of v
 - **Link register** model: $(v, w) \in E$ means v writes a register R_{vw} read by w

- **Configuration** $C \in \mathcal{C}$ consists of the Cartesian product of states of all nodes (and the registers on the edges).
Link register vs state reading model

State reading

$\text{node } s_n$

$f(s, s_1, s_2, \ldots, s_n)$

Link register

$\text{Fault Tolerance - Self-stabilisation}$
Synchronous system

- **System** \((C, F)\) proceeds in rounds
 - Program of a node \(i\) is a function \(f_i \in F\) describing the resulting state (plus registers it writes) given the current state (and the registers it writes)
 - Uniform: \(f_i = f_j\) for all \(i, j\)
 - Known identities: \(f_i(C)\) may depend on \(i\)

- **Central daemon**
 - Scheduler fairly selects *one* node \(i\) to take a step: \(C \rightarrow C^i\) (i.e. \(C' = f_i(C)\))

- **Distributed daemon**
 - Scheduler fairly selects *one or more* nodes \(I\) to take a step: first all nodes read their own state and the states/registers they can read, then compute the new state and then store the new state and the registers they write: \(C \rightarrow C^I\)
Central daemon vs distributed daemon

Central daemon

Distributed daemon
Self-stabilisation

- **Consider a system** $S = (C, F)$

- **Define some set of legitimate configurations** $\mathcal{L} \subset \mathcal{C}$
 - Typically defined using a predicate
 - These are the good configurations that we want the system to be in
 - Note that a node may not be able to determine whether its *local* state is part of a *global* configuration that is legitimate!

- **System S is self-stabilising to \mathcal{L} if**
 - **Convergence**: when we start the system in an arbitrary initial configuration $C \in \mathcal{C}$ it always reaches a legitimate configuration $C' \in \mathcal{L}$ within a finite number of steps (the convergence time)
 - **Closure**: Once the system is in a legitimate configuration it stays in a legitimate configuration after each system step

assuming no faults!
Self-stabilisation
Some questions

- Why does a self-stabilising system recover from transient memory faults?

- Can a self-stabilising system terminate?

\[G \rightarrow C_1 \rightarrow C \rightarrow C \rightarrow C \rightarrow C \rightarrow C \]
Some toy problems (1)

- Suppose the system consists of a single node...

\[f \text{ arbitrary} \ldots \]

\[\text{while } s \not\in L \]

\[\text{do } s \leftarrow s \text{good } \in L \]
Some toy problems (2)

- Suppose the system is a complete graph, and the legitimate configurations are those where all nodes have the same state.

\[
\text{node } i
\]
\[
\text{While } (s_1, s_2, \ldots, s_n) \neq \sigma
\]
\[
\text{Then } s_i \leftarrow \text{default constant value}
\]
Some toy problems (3)

- Let’s add a progress condition and suppose the state of a node is a clock that needs to be in sync with all other nodes and increases in every round.
Proving self stabilisation

Closure
- Show for every configuration $C \in \mathcal{L}$ and every step \rightarrow from C to C' such that $C \rightarrow C'$, that $C' \in \mathcal{L}$

Convergence
- Define a bounding function $b: \mathcal{C} \rightarrow \mathbb{N}$ over all possible configurations such that
 - For all configurations C, C' and steps $C \rightarrow C'$ we have $b(C) > b(C')$, and
 - $b(C) = 0$ implies $C \in \mathcal{L}$
Mutual exclusion on a ring (Dijkstra)

- $N + 1$ nodes
- State reading
- Central daemon
Impossibility of symmetric solution

- For rings of non-prime size!

\[\text{nodes} = a \lt b \]
Mutual exclusion on a ring: construction

- $N + 1$ **nodes** $0, \ldots, N$, **node 0 is special**
 - On an oriented, state reading ring: node $i + 1 \mod N$ reads state of node i

- **Each node has state** $x[i] \in \{0, \ldots, K - 1\}$ for $K > N$

- **Protocol**
 - Node 0: If $x[0] = x[N]$ then $x[0] \leftarrow x[0] + 1 \mod K$
 - Node $i \neq 0$: If $x[i] \neq x[i - 1]$ then $x[i] \leftarrow x[i - 1]$

- **Privileged (i.e. has the token)**
 - Node 0 if $x[0] = x[N]$
 - Node $i \neq 0$ if $x[i] \neq x[i - 1]$
 - I.e. node is privileged if it can take a step (which turns it unprivileged
Example
Legitimate states

- Legitimate states \mathcal{L}
 - Define $P(i, c)$ over a configuration as
 “for all j, $0 \leq j \leq i$ we have $x[j] = c + 1 \mod K$ and
 for all $j, i < j \leq N$ we have $x[j] = c$”
 - All states where there is an i, $0 \leq i \leq N$ and a $c \in \{0, \ldots, K - 1\}$ such that
 $P(i, c)$ holds are legitimate
Proof of correctness: closure

- Assume a central daemon, and $K \geq N$
Proof of correctness (1)

- Note: always at least one node enabled, so there is no deadlock
- In a legitimate configuration exactly one node enabled/privileged
- Assume a central daemon, and $K \geq N$

Closure

- Let the system be in a legitimate configuration for some choice of i, c, i.e. $P(i, c) =$ “for all $j, 0 \leq j \leq i$ we have $x[j] = c + 1 \mod K$ and for all $j, i < j \leq N$ we have $x[j] = c$” holds.
- Then only $k = i + 1 \mod N$ is enabled
- If $k \neq 0$, then after the step $x[k] = c + 1 \mod K$ and hence $P(k, c)$ holds
- If $k = 0$, then after the step $x[k] = c + 2 \mod K$ while for all other i still $x[i] = c + 1 \mod K$. Hence $P(0, c + 1 \mod K)$ holds
Proof of correctness: convergence

\[f(x) \leq 0 \iff x \leq \frac{1}{N} \]

\[K > N \]

\[x \in \mathbb{N} \]

\[\mathbb{Z} \rightarrow \mathbb{Q} \]

\[0 \leq f(x) \leq 1 \]
Proof of correctness (2)

Convergence

- Initially colour all nodes white
- Colour node 0 blue the first time it takes a step; after that it stays blue forever
- Nodes colour blue when they copy a blue value from their counterclockwise neighbour (and then stay blue forever)
- Let h be the number of times node 0 takes a step while node N is still white
- Then $h \leq N$: after the first step of 0, there are at most $N - 1$ white nodes that can provide N with at most $N - 1$ new white states
- W.l.o.g. let $x[0]$ initially be $K - 1$; after the first step $x[0]$ becomes 0; so after i-th step, $x[0] = i - 1$
- Starting at 0, we observe that all blue nodes form a decreasing chain of values
- Now let 0 be about to take the $h + 1$ th step (i.e. N is blue). Then before that step $x[0] = h - 1$. As $h \leq N \leq K$ we see that $x[0]$ did not wrap around.
- All nodes are blue at this point, and $x[N] = x[0]$.
- As now all nodes are blue, and have decreasing values, we must have $x[i] = h - 1$ for all nodes