Advanced Network Security
5. Agreement and consensus II: Byzantine failures

Jaap-Henk Hoepman

Digital Security (DS)
Radboud University Nijmegen, the Netherlands
@xotoxot // jhh@cs.ru.nl // www.cs.ru.nl/~jhh

Consensus for Byzantine failures

- Remember: Byzantine processors may lie...
- What goes wrong in the protocol for crash failures?
 - If \(|e| = f + 1\) then there is a non faulty processor \(z\) with \(\sigma = a; \gamma; \beta\).
 Then at round \(|e| + 1\) processor \(z\) sent \(v = v^{\sigma}_{z}\) to \(q\) as well (as the first processor in \(\beta\)). By construction \(v^{\sigma}_{z} = v^{\gamma}_{z}\) (as the processors in \(\beta\) forward this value to each other to finally deliver it to \(p\)). Again \(v \in I_0\)

Byzantine failures: \(f < n/3\) is necessary

- Suppose \(n = 3\) and \(f = 1\)
 - \(a\) and \(b\) must decide 1
 - \(a\) and \(c\) must decide 0
 - \(b\) decides 1, as it sees the same messages, yet \(c\) decides 0 as it sees the same messages

A protocol tolerating \(f < n/3\) byzantine failures

- Again each processor \(p\) builds the following tree \(T_p\)
 - Level 0
 - Level 1
 - Level 2
 - Level \(r\)
 - Level \(r + 1\)
 - Level \(f + 1\)
Byzantine failures: decision more complex

- Associate a decision value d^p_v to each node in the tree
 - After tree is filled with values top down, it is filled with decision values bottom up
 - d^p_v is the value for $C[p].decision$ that p decides on

- Define $Majority(S)$ be the value that occurs most in a set S, using some constant \perp to break ties

Lamport’s OM protocol for building the tree

- We write $OM^\text{OM}_p(m,v)$ to make clear processor p executes this to propagate v and to keep track of ‘stack trace’ σ
 - $OM^\text{OM}_p(m,v)$ is executed by p for all σ s.t. $|\sigma| = f - m$ and $p \notin \sigma$
 - It sends $v = v^p_\sigma$ to all nodes q (as message m^p_σ), stored by q as v^q_σ, and instructs them to propagate the value through recursion
 - It essentially builds p’s part of the subtrees rooted at σ for all processors; together with the other OM^OM_p the whole subtrees rooted at σ are built.
 - The protocol starts with $OM^\text{OM}_p(f,C[p].in)$ for all p

Lamport’s OM protocol for building the tree

- Start as $OM^\text{OM}_p(f,C[p].in)$ for all p in round 0
 - Storing $C[p].in$ as v^0_σ

A protocol tolerating $f < n/3$ byzantine failures

- Again each processor p builds the following tree T_p

 - Level 0 builds $OM^\text{OM}_p(m,v)$
 - Level 1 builds $OM^\text{OM}_p(m,v)$
 - Level 2 builds $OM^\text{OM}_p(m,v)$
 - Level r builds $OM^\text{OM}_p(m,v)$

Example:
- $v^0_{q1} = v^0_{q2}$ means: q_1 told p, that q_2, told q_1, that q_1’s value is v
- Initially all i’s value is \perp
- $v^r_{q3} = v^r_{q4}$ for all $j \notin \sigma$, i.e. $n - |\sigma| = n - r$ children
One step in detail

- **Level 0**:
 - \(v^0 \)
 - \(m^0_{1,0} \)
 - \(m^0_{1,n} \)

- **Level 1**:
 - \(v^1 \)
 - \(m^1_{1,0} \)
 - \(m^1_{1,n} \)

- **Level 2**:
 - \(v^2 \)
 - \(m^2_{1,0} \)
 - \(m^2_{1,n} \)

- **Level 3**:
 - \(v^3 \)
 - \(m^3_{1,0} \)
 - \(m^3_{1,n} \)

So building the tree is the same protocol as for crash failures.

- **Before round 1**
 - Initialise tree. Set all \(v^r \) and \(v^r = C[p] \) in
 - Initially all \(v^0 = C[p] \) in

- **Round** \(r, 1 \leq r \leq f + 1 \)
 - For all \(\sigma \) with \(|\sigma| = r - 1 \land p \not\in \sigma \), send \(v^r \) to all processors \(q \) (including \(p \))
 - Call this message \(m^r_{q,p} \)
 - Receive all \(m^r_{x,y} \) addressed to \(p \) and store in \(v^r_{p,x} \)
 - By the protocol \(x \not\in \sigma \) so \(p \) receives \(n - (r - 1) \) such messages from each \(x \)

Deciding on a value

- **Work from the leaves upwards**
 - \(d^f_0 = v^f_0 \) for \(|\sigma| = f + 1 \)
 - \(d^f_x = \text{Majority}(d^f_{x,q} | q \not\in \sigma) \) otherwise
 - Node \(p \) decides on \(d^f_p \)

Correctness

- **Lemma 1**: If \(p, q, r \) are non faulty, then for all \(\sigma \) we have \(v^f_{q,r} = v^f_{p,r} \)
 - If \(r \) is non faulty, it sends the same value to \(p \) and \(q \). If \(p \) and \(q \) are non faulty the record this value correctly.

- **Set** \(d^f_x = v^f_x \) for all leaves, ie \(|\sigma| = f + 1 \)
Correctness

- **Lemma 1**: If \(p, q, r \) are non faulty, then for all \(v \) we have \(d^p_v = d^q_v = d^r_v \).
- **Lemma 2**: Let \(\sigma \) be arbitrary and let \(r \) be non faulty. Then there is a value \(v \) such that for all non faulty \(p \) we have \(d^p_v = v \).
 - By induction on the length of \(p, r \) starting with the leaves (length \(f + 1 \)).
 - The base case follows from lemma 1 and the fact that for \(p, r = f + 1 \) we have \(d^p_v = v \).
 - Now suppose \(0 \leq |p, r| < f + 1 \). By lemma 1 all non faulty processors have the same value \(v \). Then all non-faulty processors \(p \not\equiv r \) send \(v \) as \(m_{p,r} \) to all other processors \(q \). If non faulty, \(q \) sets \(v_{p,r} = v \).
 - By the induction hypothesis we have \(v_{s,r} = v \) for all non faulty \(s \).
 - The number of children of a node with label \(s, r \) is \(n - |s, r| \geq n - f > 2f \).
 - Hence the majority of children is non-faulty, and so \(d^p_v = \text{Majority}([d^s_v | p \not\equiv s]) = v \).

Lemma 2

- **Lemma 2**: Let \(\sigma \) be arbitrary and \(r \) be non faulty.
 - **Base case** \(|\sigma, r| = f + 1 \)
 - **Induction** \(|\sigma, r| = k + 1 < f + 1 \)

Validity

- **Theorem**: If all non faulty processors have input \(v \) they decide on \(v \)
 - If all non faulty processors have input \(v \), they send \(v \) to all other nodes in the first round. As a result \(v^p_v = v \) for all correct \(p \) and \(q \).
 - By lemma 2 \(d^p_v = v \) for all correct \(p \) and \(q \) and hence \(d^p_v = \text{Majority}([d^q_v | \text{for all } q]) = v \).

Agreement

- **Definition 1**: \(\sigma \) is common if \(d^p_v = d^q_v \) for all pairs of non faulty \(p, q \).
- **Definition 2**: A subset \(\tilde{C} \) of nodes in a tree \(T \) is a path cover of \(T \) if all paths from the leaves to the root visit at least one node in \(\tilde{C} \).
- **Definition 3**: A path cover \(\tilde{C} \) is common if all nodes in \(\tilde{C} \) are common. (Note: this does not require \(d^p_\sigma = d^q_\sigma \), for different \(\sigma, \sigma' \).
Agreement

Lemma 3. There exists a common path covering of the tree constructed by the consensus algorithm
- All paths from the root to a leaf correspond to a label \(\sigma \) with length \(f + 1 \).
- Then \(\sigma = \sigma'; \tau; \sigma'' \) for some non faulty \(\tau \)
- By lemma 2 \(d^\sigma_{p,q} = d^\sigma'_{p,q} \) for all non faulty \(p,q \) and so \(\sigma'; \tau \) is common and on the path.

Lemma 4. Let \(\sigma \) be a node. If there is a common path covering of the subtree rooted at \(\sigma \), then \(\sigma \) is common itself.
- By induction on the length of \(\sigma \)
- For \(|\sigma| = f + 1 \) the lemma trivially follows
- Let \(0 \leq |\sigma| < f + 1 \) and assume there is a common path covering \(C \) of the subtree rooted at \(\sigma \). If \(\sigma \in C \) we are done. If not, then the trees rooted in all children have a common path covering and by the induction hypothesis then all children \(\sigma'; \tau \) of \(\sigma \) are common.
- Hence \(d^\sigma_{p,q} = d^{\sigma'}_{p,q} \) for all pairs of non faulty \(p,q \). Hence \(d^\sigma = \text{Majority}(d^{\sigma'}_{p,q}) \) and hence \(\sigma \) is common as well.

Theorem: All non faulty nodes decide on the same value
- Follows from lemma 3 and 4.

Signing messages

Every processor \(p \) has a private signing key. The corresponding signature verification key is known to all processors.
- Let us write \([m]_p \) for a message \(m \) signed by \(p \). Write \([m]_{p,q} \) for \([\ldots[m]_{p,q-1}]_{p} \), with \(\sigma = p; \ldots ; \tau \)
- Processors reject any messages with incorrect signatures.
 - Byzantine nodes cannot forge values pretending they heard another value from a correct processor
 - But they can send conflicting initial values in the first round!
- Now consider the weak broadcast protocol

Using authentication
(Binary) Broadcast (aka agreement)

- **Sender** p in round 1
 - If $C[p].m = 1$ then send $[1]_p$ to all, otherwise stay silent
 - Decide on $C[p].m$
- **Other nodes** q
 - For each round $r \in \{1, \ldots, f+1\}$
 - If you receive a valid $[1]_q$ message (note $|q| = r$) with $\sigma = p; \sigma'$ then send $[1]_{\sigma} = [1]_{\sigma'}$ to all, decide on 1 and terminate
 - Decide on 0 and terminate

Correctness

- **Agreement**
 - Suppose a correct node decides on 1 in round r. This means it received a valid $[1]_p$ message. If $r < f + 1$ then p sends a valid $[[1]_p]_{\sigma} = [1]_{\sigma'}$ message to all correct q who therefore decide on 1 too. If $r = f + 1$ then $|p| = f + 1$ hence $\sigma = \sigma'; q; \sigma''$ for some correct q that sent a valid $[1]_{\sigma''}$ message to all correct nodes that therefore decided on 1 in round $|p'| + 1$.
- **Validity**
 - Suppose p is correct. Either it sends $[1]_p$ to all, and all correct nodes decide 1 in round 1. Or it does not send anything. As a result no correct node receives a valid $[1]_q$ message, so all correct nodes decide 0 in round $f + 1$.

Reaching consensus

- Each node uses the broadcast algorithm to send its input value to all other nodes
- All other nodes obtain (by the agreement property of the broadcast) the same vector of input values
- All nodes decide on the majority of values in this vector (breaking ties in a deterministic way)
- If $f < n/2$ then if all nodes have the same input value, all nodes decide on this value.