Self-stabilisation: a different failure model

- Instead of (permanent) processing failures we study transient memory failures
 - State of a node stored in RAM, which can be changed arbitrarily
 - Program code stored in ROM, never changed

- State of network can also change
 - So study shared memory systems to simplify analysis
 - But self-stabilisation in message passing systems is also possible

System model

- **n nodes**
 - Uniform (all with the same state) or non-uniform
 - With or without known node identifiers (stored in ROM, i.e. cannot change)

- Communicating through shared memory
 - Modelled through graph \(C = (V, E) \)
 - State reading model: \((v, w) \in E \) means \(w \) can read entire state of \(v \)
 - Link register model: \((v, w) \in E \) means \(v \) writes a register \(B_{vw} \) read by \(w \)

- Configuration \(C \in C \) consists of the Cartesian product of states of all nodes (and the registers on the edges).

Synchronous system

- **System \((C, F)\) proceeds in rounds**
 - Program of a node \(i \) is a function \(f_i \in F \) describing the resulting state (plus registers it writes) given the current state (and the registers it writes)
 - Uniform: \(f_i = f \) for all \(i,j \)
 - Known identities: \(f_i(C) \) may depend on \(i \)

- **Central daemon**
 - Scheduler fairly selects one node \(i \) to take a step: \(C \xrightarrow{i} C' \) (i.e. \(C' = f_i(C) \))

- **Distributed daemon**
 - Scheduler fairly selects one or more nodes \(i \) to take a step: first all nodes read their own state and the states/registers they can read, then compute the new state and then store the new state and the registers they write: \(C \xrightarrow{1,2} C' \)
Self-stabilisation

- Consider a system $S = (\mathcal{C}, F)$
- Define some set of legitimate configurations $\mathcal{L} \subseteq \mathcal{C}$
 - Typically defined using a predicate
 - These are the good configurations that we want the system to be in
 - Note that a node may not be able to determine whether its local state is part of a global configuration that is legitimate!
- System S is self-stabilising to \mathcal{L} if
 - Convergence: when we start the system in an arbitrary initial configuration $\mathcal{C} \notin \mathcal{L}$ it always reaches a legitimate configuration $\mathcal{C'} \in \mathcal{L}$ within a finite number of steps (the convergence time)
 - Closure: Once the system is in a legitimate configuration it stays in a legitimate configuration after each system step

Some questions

- Why does a self-stabilising system recover from transient memory faults?
- Can a self-stabilising system terminate?

Some toy problems

- Suppose the system consists of a single node
 - Then you can simply reset the node to a legitimate configuration
- Suppose the system is a complete graph, and the legitimate configurations are those where all nodes have the same state
 - The transition function simply checks this condition, and if false sets the state of a node to a default state
- Let’s add a progress condition and suppose the state of a node is a clock that needs to be in sync with all other nodes and increases in every round
 - How to stabilise in this case... Take majority? You can only change your own state... What about unwanted parallelism?

Mutual exclusion on a ring (Dijkstra)

- Refresher: what is mutual exclusion?
 - Here: a token circulating on a ring
- Impossibility of symmetric solution for rings of non-prime size
 - Non-prime: break ring in equal size chords >1;
 - Assume symmetric states for all chords
 - Schedule same location nodes one by one or all at once: still symmetric
Mutual exclusion on a ring: construction

- $N + 1$ nodes, $0, ..., N$, node 0 is special

 - On an oriented, state reading ring; node $i + 1 \mod N$ reads state of node i

- Each node has state $x[i] \in \{0, ..., K - 1\}$ for $K > N$

- Protocol

 - Node 0: if $x[0] = x[N]$ then $x[0] = x[0] + 1 \mod K$
 - Node $i \neq 0$: if $x[i] = x[i - 1]$ then $x[i] = x[i - 1]$

- Privileged (i.e. has the token)

 - Node 0 if $x[0] = x[0]$
 - Node $i \neq 0$ if $x[i] = x[i - 1]$
 - I.e. node is privileged if it can take a step (which turns it unprivileged)

- Legitimate states c

 - All states where there is an $i, 0 \leq i \leq N$ and $c \in \{0, ..., K - 1\}$ such that for all $j, 0 \leq j \leq i$ we have $x[j] = c + 1 \mod K$ and for all $j, i < j \leq N$ we have $x[j] = c$

Proof of correctness (1)

- Note: always at least one node enabled, so there is no deadlock

- In a legitimate configuration exactly one node enabled/privileged

- Assume a central daemon, and $K \geq N$

- Closure

 - Let the system be in a legitimate configuration for some choice of i, c

 - I.e., $P(i, c) = \{\text{for all } j, 0 \leq j \leq i \text{ we have } x[j] = c + 1 \mod K \text{ and for all } j, i < j \leq N \text{ we have } x[j] = c\}$ holds.

 - Then only $k = i + 1 \mod N$ is enabled

 - If $k \neq 0$, then after the step $x[k] = c + 1 \mod K$ and hence $P(k, c)$ holds

 - If $k = 0$, then after the step $x[k] = c + 2 \mod K$ while for all other i still $x[i] = c + 1 \mod K$. Hence $P(0, c = 1 \mod K)$ holds

Proof of correctness (2)

- Convergence

 - Initially colour all nodes white

 - Colour node 0 blue the first time it takes a step; after that it stays blue forever

 - Nodes colour blue when they copy a blue value from their counterclockwise neighbour (and then stay blue forever)

 - Let h be the number of times node 0 takes a step while node k is still white

 - Then $h \leq K$: after the first step of 0, there are at most $N - 1$ white nodes that can provide 0 with at most $K - 1$ new white states

 - W.l.o.g. let $x[0]$ initially be $K - 1$; after the first step $x[0]$ becomes 0; so after i-th step, $x[0] = i - 1$

 - Starting at 0, we observe that all blue nodes form a decreasing chain of values

 - Now let 0 be about to take the $h + 1$-th step (i.e. h is blue). Then before that step $x[0] = h - 1$

 - As $h \leq N \leq K$ we see that $x[0]$ did not wrap around.

 - All nodes are blue at this point, and $x[0] = x[0]$

 - As now all nodes are blue, and have decreasing values, we must have $x[i] = h - 1$ for all nodes