Self-stabilisation: a different failure model

- Instead of (permanent) processing failures we study transient memory failures
 - State of a node stored in RAM, which can be changed arbitrarily
 - Program code stored in ROM, never changed

- State of network can also change
 - No study shared memory systems to simplify analysis
 - But self-stabilisation in message passing systems is also possible

System model

- Nodes
 - Uniform (all with the same state) or non-uniform
 - With or without known node identifiers (stored in ROM, i.e. cannot change)

- Communicating through shared memory
 - Modelled through graph $G = (V, E)$
 - State reading model: $(v, w) \in E$ means w can read entire state of v
 - Link register model: $(v, w) \in E$ means v writes a register R_{vw} read by w

- Configuration $C \subseteq C$ consists of the Cartesian product of states of all nodes (and the registers on the edges).
Synchronous system

- System \((\mathcal{C}, \mathcal{F})\) proceeds in rounds
 - Program of a node \(i\) is a function \(f_i \in \mathcal{F}\) describing the resulting state (plus registers it writes) given the current state (and the registers it writes)
 - Uniform: \(f_i = f_j\) for all \(i, j\)
 - Known identities: \(f_i(C)\) may depend on \(i\)
- Central daemon
 - Scheduler fairly selects one node \(i\) to take a step: \(C \xrightarrow{f_i} C'\) (i.e. \(C' = f_i(C)\))
- Distributed daemon
 - Scheduler fairly selects one or more nodes \(I\) to take a step: first all nodes read their own state and the states/registers they can read, then compute the new state and then store the new state and the registers they write: \(C < \xrightarrow{I} C'\)

Self-stabilisation

- Consider a system \(\tilde{S} = (\mathcal{C}, \mathcal{F})\)
- Define some set of legitimate configurations \(\mathcal{L} \subset \mathcal{C}\)
 - Typically defined using a predicate
 - These are the good configurations that we want the system to be in
 - Note that a node may not be able to determine whether its local state is part of a global configuration that is legitimate!
- System \(\tilde{S}\) is self-stabilising to \(\mathcal{L}\) if
 - Convergence: when we start the system in an arbitrary initial configuration \(C \in \mathcal{C}\) it always reaches a legitimate configuration \(C' \in \mathcal{L}\) within a finite number of steps (the convergence time)
 - Closure: Once the system is in a legitimate configuration it stays in a legitimate configuration after each system step

Some questions

- Why does a self-stabilising system recover from transient memory faults?
- Can a self-stabilising system terminate?
Some toy problems
- Suppose the system consists of a single node
 - Then you can simply reset the node to a legitimate configuration
- Suppose the system is a complete graph, and the legitimate configurations are those where all nodes have the same state
 - The transition function simply checks this condition, and if false sets the state of a node to a default state
- Let’s add a progress condition and suppose the state of a node is a clock that needs to by in sync with all other nodes and increases in every round
 - How to stabilise in this case? Take majority? You can only change your own state... What about unwanted parallelism?

Mutual exclusion on a ring (Dijkstra)
- Refresher: what is mutual exclusion?
- Here: a token circulating on a ring
- Impossibility of symmetric solution for rings of non-prime size
 - Non-prime: break ring in equal size chords >1;
 - Assume symmetric states for all chords
 - Schedule same location nodes one by one or all at once: still symmetric

Mutual exclusion on a ring: construction
- \(N + 1 \) nodes \(0, \ldots, N \); node 0 is special
 - On an oriented, state reading ring: node \(i + 1 \mod N \) reads state of node \(i \)
- Each node has state \(x[i] \in [0, \ldots, K-1] \) for \(K > N \)
- Protocol
 - Node 0: if \(x[0] = x[N] \) then \(x[0] \leftarrow x[0] + 1 \mod K \)
 - Node 0: if \(x[i] = x[i+1] \) then \(x[i] \leftarrow x[i] + 1 \)
 - Privileged (i.e. has the token)
 - Node 0 if \(x[0] = x[N] \)
 - Node 0 if \(x[i] = x[i-1] \)
 - I.e. node is privileged if it can take a step (which turns it unprivileged)
- Legitimate states \(c \)
 - All states where there is an \(i, 1 \leq i \leq N \) and \(c \in [0, \ldots, K-1] \) such that for all \(j, 0 \leq j \leq i \) we have \(x[j] = c + 1 \mod K \) and for all \(j, i < j \leq N \) we have \(x[j] = c \)
Proof of correctness (1)

- Note: always at least one node enabled, so there is no deadlock
- In a legitimate configuration exactly one node enabled/privileged
- Assume a central daemon, and $K \geq N$

Closure

- Let the system be in a legitimate configuration for some choice of i, c, i.e. $P(i, c) = \"for all \ j, 0 \leq j \leq i \ we \ have \ x(j) = c + \ (j \div K) \ and \ for \ all \ j, i < j \leq N \ we \ have \ x(j) = c\"$ holds.
- Then only $k = i + 1 \ mod \ N$ is enabled
- If $k \neq 0$, then after the step $x(k) = c + 1 \ mod \ K$ and hence $P(k, c)$ holds
- If $k = 0$, then after the step $x(k) = c + 2 \ mod \ K$ while for all other i still $x(i) = c + 1 \ mod \ K$. Hence $P(0, c + 1 \ mod \ K)$ holds

Proof of correctness (2)

Convergence

- Initially colour all nodes white
- Colour node 0 the first time it takes a step; after that it stays blue forever
- Nodes colour blue when they copy a blue value from their counterclockwise neighbour (and then stay blue forever)
- Let h be the number of times node 0 takes a step while node N is still white
- Then $h \leq N$: after the first step of 0, there are at most $N - 1$ white nodes that can provide N with at most $N - 1$ new white states
- W.l.o.g. let $x[0]$ initially be $K - 1$; after the first step $x[0]$ becomes 0; so after i-th step, $x[0] = i - 1$
- Starting at 0, we observe that all blue nodes form a decreasing chain of values
- Now let the chain to take the i-th step i.e. $i = 0$: it blue, then before that step $x[0] = i - 1$
- As $0 \leq i \leq N$ we see that $x[0]$ did not wrap around.
- All nodes are blue at this point, and $x[N] = x[0]$. As per all nodes are blue, and have decreasing values, we must have $x[i] = i - 1$ for all nodes.