

JavaCards As Secure Objects Network

R. Brinkman

Master thesis Evaluation committee:
Distributed and Embedded Systems dr. J.H. Hoepman
Computer Science prof. dr. P.H. Hartel
University of Twente prof. ir. E.F. Michiels
November 2002 dr. S. Etalle

 Abstract 3

 Abstract
Jason is an acronym for JavaCards As Secure Objects Network. The Jason
framework simplifies the development of a network of cooperating smart card
applets. The security of both the applets and the communication between them is
handled completely by the framework. The application developer does not have to
be concerned with it. He only specifies the security requirements in the form of a
Jason definition file. Data which will be transmitted over the network can be
marked as confidential or can be signed. The rights to invoke a method can be
specified as well. A special pre-compiler will transform this file into a skeleton
object running on the smart card and a stub file running on the PC. The generated
objects handle the security and the marshalling of individual parameters into a single
byte array.

 Samenvatting
Het Jason raamwerk, hetgeen staat voor JavaCards As Secure Objects Network ver-
gemakkelijkt het om een netwerk op te zetten van samenwerkende smart card
applets. De beveiliging van zowel de applets zelf als de communicatie ertussen
wordt door het raamwerk verzorgd. De programmeur van de applicatie hoeft zich
niet druk te maken over de beveiliging. Hij specificeert door middel van een Jason
definitie bestand welke eisen hij aan de beveiliging stelt. Data die over het netwerk
verstuurd moet worden, kan worden aangemerkt als vertrouwelijk of kan worden
ondertekend met een handtekening. Ook de rechten om een functie aan te roepen
kunnen worden gespecificeerd. Een speciale pre-compiler leest dit bestand en
genereert aan de hand hiervan een skeleton object die op de smart card draait en
een stub object die op de PC draait. Deze gegenereerde objecten dragen zorg voor
de beveiliging en de conversie van losse parameters naar één groot data blok.

 Contents 5

Contents
1 Introduction ... 7

2 State of the art .. 9
2.1 ISO 7816 ...9
2.2 JavaCard ..9
2.3 Connecting to smart cards through terminals.. 10
2.3.1 OpenCard Framework ... 11
2.3.2 JCRMI... 11
2.4 Security of smart cards... 12
2.4.1 JavaCard ... 12
2.4.2 JCCap.. 13

3 Requirements specifications.. 17
3.1 Possible scenarios ... 17
3.1.1 Access card for a building ... 17
3.1.2 Substitute for passport ... 18
3.1.3 Software license management ... 18
3.1.4 Electronic purse .. 18
3.1.5 Health care card .. 18
3.1.6 Electronic Toll System... 18
3.1.7 Digital signature .. 18
3.2 Threats .. 19
3.3 Requirements... 20

4 Design.. 21
4.1 General design... 21
4.2 Network.. 21
4.3 Jason definition file... 22
4.3.1 accessible to keyword ... 22
4.3.2 authentic keyword... 23
4.3.3 confidential keyword .. 23
4.4 Protocol Data Units ... 23
4.5 Security ... 25
4.6 Naming ... 26

5 Using SMI.. 27
5.1 Writing JASON definition file .. 28
5.2 Generating interface ... 29
5.3 Writing implementation... 29
5.4 Generating Skeleton ... 30
5.5 Generating Stub .. 31
5.6 Personalization .. 32
5.7 Client application .. 32
5.8 Running .. 33

6 Implementation ... 35
6.1 Layering possibilities .. 35
6.1.1 SMI on top of RMI .. 35
6.1.2 RMI on top of SMI .. 35
6.1.3 SMI besides RMI .. 36
6.2 Architecture ... 36
6.3 Jason pre-compiler.. 37

6 JavaCards As Secure Objects Network

6.3.1 Java interface generator.. 37
6.3.2 Skeleton generator .. 37
6.3.3 Stub generator ... 37
6.4 Key management .. 37
6.5 Naming ... 38

7 Testing ... 39
7.1 Two simulators.. 39
7.1.1 JCWDE .. 39
7.1.2 C-JCRE... 39
7.2 Crypto implementations .. 40
7.3 Scriptgen and Apdutool ... 40
7.4 Bugs in the JavaCard Development Kit.. 40

8 Conclusions and future work... 43

9 References.. 45

A Jason Definition File Grammar ... 47
A.1 .jason file format ... 47
A.2 JDF array .. 47

B JCRMI data formats... 49
B.1 Select APDU command format ... 49
B.2 Invoke APDU command format ... 49
B.3 Remote Object Reference Descriptor ... 49
B.4 Parameter encoding .. 50
B.5 Return value encoding ... 51

Chapter 1 Introduction 7

1 Introduction
The JavaCard platform made it possible to develop smart card application using a
high level language: Java. Java is an Object Oriented Programming (OOP) language.
Unfortunately, the OOP paradigm is only applied to the software within the smart
card itself: invoking methods implemented by objects on the smart card still
requires the developer to send commands to the smart card using Application
Protocol Data Units (APDU’s), which have to be processed and transformed into
method calls ‘by hand’.
It would be much more natural to view an object stored on a JavaCard as a remote
object, accessible through a remote method invocation mechanism. In fact, if we
look at a smart card application at a higher level of abstraction, we basically see a
large collection of interconnected objects. These objects are stored on secure smart
cards. Therefore, this network is highly dynamic. Smart cards are usually offline and
only connect to the network when they are inserted into a card accepting device.
This network needs to be highly secure. Not only the objects should be stored
securely, also the communication has to be secure. Access to certain objects should
be restricted, and the confidentiality and authenticity of the communication
between the objects have to be guaranteed. Communication uses a Secure Method
Invocation (SMI) scheme. The Javacards As Secure Objects Network (Jason)
platform acts as a middleware layer to support this paradigm. By simplifying the
communication with a smart card and by providing extensive support to secure this
communication, Jason aims to greatly simplify the development of smart card
applications.
In section 2 the current technology is discussed. The ISO 7816 [4] standard and the
JavaCard standard are explained in sections 2.1 and 2.2. Two communication
mechanisms are discussed in section 2.3. The similar approach of Hagimont and
Vandewalle [10] is discussed in section 2.4.2.
After looking at some possible scenarios in section 3.1 the requirements
specification is distilled in section 3.3. This requirements specification leads to the
design given in section 4. In this section we will describe the Jason Secure Method
Invocation (SMI) scheme. In this scheme, a Jason definition file (JDF) (resembling a
Java interface with some additional keywords) is used to specify the access
conditions on methods of an object (section 4.3). The protocol data units that the
network (section 4.2) uses, are dealt with in section 4.3. At last the security (section
4.5) and the naming paradigm (section 4.6) are described.
In section 5 a simple example is discussed. All steps from writing the Jason
Definition File and the implementation to the generation of the stub and skeleton
are explained. The big advantage for the smart card application developer is that he
only needs to specify the security requirements, but does not have to implement the
security protocols himself. They are present in the generated stub and skeleton.
After having seen how the secure method invocation works, section 6 tells us why it
works. The chosen architecture of section 6.2 is a natural conclusion of the layering
possibilities that are given in section 6.1. A short summary of the Jason pre-
compiler is given in section 6.3. For a more elaborate discussion on the pre-
compiler’s implementation you may take a look at the API documentation. The way
key management and naming is handled is given in sections 6.4 and 6.5.
Before the conclusion that the framework works correctly, some problems that
arose during the test phase are discussed in section 7 as well as the tools that can be
used for testing.

Chapter 2 State of the art 9

2 State of the art
In the area of smart card technology a lot of research has been done and is being
done. Particularly the JavaCard standard is a promising evolvement. The JavaCard
standard fully complies with earlier smart cards. It is compatible with the ISO 7816
standard that will be discussed next. Section 2.2 deals with the JavaCard standard in
more detail. The discussion about the security of smart cards is postponed to
section 2.4.

2.1 ISO 7816
There are many types of smart cards and card accepting devices (CAD). Without a
standard each type of smart card should have its own type of CAD. Fortunately
there is such a standard. ISO 7816 [4] specifies the protocol that is being used for
the communication between smart card and CAD. Like IP packets, the Application
Protocol Data Units (APDU’s) consist of a header field and a data part. Two types
of APDU’s exist: command APDU’s and response APDU’s. Command APDU’s
are the data packets from the CAD to the card and response APDU’s are the data
packets from the card to the CAD. Figure 1 shows the fields of a command APDU.
The Class byte (CLA) and the Instruction byte (INS) together determine which
function should be invoked. CLA values in the range 0x0X, 0x8X, 0x9X and 0xAX
are reserved by the ISO standard. The two parameter bytes are not specified and
can be used freely. Lc is the length of the adjacent data field. Le is the expected
length of the response data. When the response data is larger than Le the response is
divided into multiple APDU’s that are smaller or equal to Le.

CLA INS P1 P2 Lc Data Le
Figure 1 ISO 7816 Command APDU

Data SW1 SW2

Figure 2 ISO 7816 Response APDU

Figure 2 shows the format of the response APDU. The Data size is always less than
or equal to the Le value of the corresponding command APDU. The Status Word
bytes SW1 and SW2 hold the error status. A value of 0x9000 indicates that the
command is performed without error and that the Data part contains correct data.
The ISO standard predefines status words in the range 0x6XXX. Other status
words can be used within the applet.

2.2 JavaCard
JavaCard technology [3] makes it possible to develop software for a smart card
using a high level language: Java. This technology is platform independent, since it is
running on a virtual machine instead of directly on the target machine. It is possible
to download multiple applications to the card. In the JavaCard terminology these
applications are named card applet, caplet or simply applet. Each applet runs securely
within its own sandbox, without interference with other applets that are present on
the card. It is therefore possible for post-issuance applications to be added to an
existing card. The JavaCard standard is fully compatible with the international
standard ISO 7816 [4].
Smart cards have very limited processing power and even less memory space. A
typical JavaCard is equipped with a processor of about 5 MHz and 16 kB of
memory. Often, three types of memory are present on a single card. Read Only

10 JavaCards As Secure Objects Network

Memory (ROM) is used for immutable code like the operating system and the
native code of the Java virtual machine. Electronical Erasable Read Only Memory
(EEPROM) is used for persistent data like the card applets and long lived objects.
For temporary data (i.e. session keys) Random Access Memory (RAM) can be used.
RAM will loose all data when the card is removed from the card accepting device.
Objects are stored in EEPROM. Their state is preserved even when the card is
being ejected from the card accepting device. No file I/O is needed, because all data
is stored automatically. Because of the limited amount of memory only a subset of
Java is implemented on the card. For example, no String class is available and the
garbage will not be collected. Of the primitive types only bytes, booleans, shorts and
single dimension arrays of these types are allowed. Newer JavaCards also allow the
int type.

.java files javac compiler .class files

converter.cap filescriptgen

.scr file apdutool smart card

Figure 3 Conversion from source file to smart card

The process of building an applet and downloading it to a smart card is sketched in
figure 3. The process starts like any other Java application, enabling the use of of-
the-shelf Java Developer Environments to create the class files. The converter
behaves much like the standard jar tool except that it also optimizes the code.
Before the cap file can be sent to the card, a script file must be generated. Each line
of this text file contains an Application Protocol Data Unit (APDU) in hexadecimal
form. At last the apdutool reads the script file and sends the APDU’s to the card
accepting device, which will store it on the card.
Of all present applets, at most one is selected. Only the selected applet can perform
tasks. All other applets are suspended. APDU’s sent to the card will first pass the
internal card dispatcher. The dispatcher keeps track of the currently selected applet
and redirects all APDU’s to it. When a select APDU is received, the currently
selected applet will be deselected. The part of the RAM marked with
CLEAR_ON_DESELECT will be cleared, but the EEPROM will keep its state.

2.3 Connecting to smart cards through terminals
In section 2.1 we saw that the ISO 7816 standard defines the protocol between
smart card and terminal. Unfortunately no such standard does exist for the com-

Chapter 2 State of the art 11

munication channel between terminal and client application. A client application
specialized for communicating with one type of terminal, will not work in combi-
nation with other terminals. Therefore an abstraction layer is necessary between
application and terminal, providing a static API for the application. It should be
simple to plug in a device driver for a terminal. The OpenCard Framework (OCF)
provides such an API. The new JavaCard Remote Method Invocation (JCRMI)
implementation makes use of it.

2.3.1 OpenCard Framework
In the smart card business many parties are involved: card terminal vendors, card
operating system providers, card issuers and card users. The OpenCard Framework
(OCF) [9] provides a mechanism to make them independent of each other. A card
user (a bank, for example) is not bound to a card issuer or a terminal vendor. OCF
supplies an API for handling the communication between a PC application and a
smart card reader. Since OCF is developed by the major smart card companies, it
supports all kinds of smart cards and card readers. An application does not even
have to know which smart card reader is being used during a communication
session with a card. OCF does not specify the card side. The choice of a particular
type of smart card is free and may change without changing the PC application.
To accomplish the separation between the client application and the terminal the
OCF framework itself is separated into two layers (see figure 4). The CardService
layer consists of a static API for the client application providing a gateway to the
services the card implements. The CardService layer abstracts from the type of
smart card (operating) system. The client application using the CardService layer
may not know whether the card has a file oriented structure or an object oriented
one. The CardServices give interfaces to some standard smart card operating
functions. These interfaces abstract from the various smart card implementations.
The CardTerminal layer abstracts from the type of terminal hardware. It consists of
various interfaces and abstract classes that a terminal manufacturer should
implement in order to plug their terminal type into the OpenCard framework.

CardServive layer

CardTerminal layer

Figure 4 OCF layers

2.3.2 JCRMI
The latest JavaCard specification (2.2) includes a lightweight version of Sun's
Remote Method Invocation (RMI) [5]. It provides a mechanism for a client
application running on the terminal to invoke a method of a remote object stored
on the card just like an invocation within the same virtual machine. The parameters
of a remote method should be primitive (byte, boolean, short, int) or a single-
dimension array of a primitive type (byte[], boolean[], short[], int[]). Unlike standard
Java RMI, object parameters (whether remote or not) are not allowed. The method
result is of primitive type, a single-dimension array of primitive type, a remote inter-
face object or void. All parameters and return values are transmitted by value,
except for the remote object. The remote object is transmitted by reference.
An object can be invoked remotely only when it implements a subinterface of
java.rmi.Remote. The subinterface specifies the methods that will be exported. Each
method should add java.rmi.RemoteException to its throws clause. A Remote-
Exception will be thrown by the RMI system when a transmit error occurs. Only

12 JavaCards As Secure Objects Network

exceptions that are specified in the JavaCard specification are catchable by the client
application. Use UserException for your own exceptions.
A remote object implementation can be translated to a stub file by the rmic
compiler. This stub file also implements the remote interface extension and acts as
the local placeholder for the actual implementation. The parameters will be
marshalled into a byte array. See appendix B for the format of the serialized byte
array. The serialized data is encapsulated into an APDU which is sent to the card.
The receiving applet will dispatch the APDU to an instance of the RMIService
class. The RMIService is instantiated with a remote object and will handle all the
marshalling for that object.

2.4 Security of smart cards
A JavaCard, like any other smart card, is mostly used for security reasons. Therefore
a JavaCard has build in support for encryption/decryption as well as signing and
verifying signatures. Furthermore a firewall is protecting the applets from inter-
ference with other applets on the card. Section 2.4.1 will deal with the security
aspects that standard JavaCards are equipped with. Section 2.4.2 will handle a
security framework similar to Jason.

2.4.1 JavaCard
JavaCards are equipped with a javacard.security and a javacardx.crypto package
which are lightweight versions of the java.security and javax.crypto packages. The
packages only specify the overall framework. They do not contain the actual
implementations. Typically the implementation consists of native methods which
are stored in the ROM part of the smart card.

Figure 5 Applet Firewall mechanism [7]

To increase security, a firewall mechanism is added to JavaCards. Each package
containing one or more applets is assigned to a security context. Security contexts
are separated by a firewall as is shown in figure 5. Apart from the applet contexts
one context for the JavaCard Runtime Environment (JCRE) [7] exists. It is merely a

Chapter 2 State of the art 13

security context with extra system privileges. Only one security context can be
active at a time. The virtual machine checks all byte codes that access objects in
order to verify if access is allowed. If the object does not belong to the active
security context, a SecurityException is thrown.
To allow an applet access to an object of another security context there are four
mechanisms for switching contexts in a secure and well-defined way: using JCRE
entry point objects, global arrays, JCRE privileges and shareable interfaces. JCRE
entry point objects are objects belonging to the JCRE context that are marked as
entry point to system routines. Global arrays may be accessed by all contexts, but
can only be created by the JCRE itself. Typically, there is only one global array, i.e.
the APDU buffer. The JCRE may access all objects of all contexts. This is one of
the privileges the JCRE context has. Shareable interfaces are the only mechanism
for normal applet contexts to access objects from another context. A server object
providing shareable methods should implement a subinterface of Shareable. All
methods defined in the subinterface can eventually be accessed from other security
contexts. A client object that wants to invoke the shareable method must first
invoke JCSystem.getShareableInterfaceObject. This static method redirects the
request to the applet owning the server object. This applet may decide whether or
not the client applet is granted access.

2.4.2 JCCap
Hagimont and Vandewalle propose in their paper [10] a security framework with
capabilities based on the earlier developed Direct Method Invocation (DMI) system
[11]. Their requirements specification resembles a subset of our own requirements
(see section 3.3). In short, they wanted to separate security issues from the
implementation. An application developer should not be bothered with writing
security algorithms himself. He only has to specify the security requirements
without implementing them. Only access control is handled by their framework.
Confidentiality and authenticity of parameters and method returns are not assured.
Capabilities are used to protect the methods of an object. An object possessing the
appropriate capability has access to the method. Capabilities can be delegated to
other objects. For instance, object A possessing a capability for object B may give
this capability to object C.
Hagimont and Vandewalle distinguish two kinds of method invocation. The
simplest kind is between objects on the same smart card. If the objects do not
belong to the same security context (see 2.4.1) shareable interfaces are used. The
more difficult kind is between two objects within different virtual machines. DMI is
used for the method invocation of a smart card object by an object residing in a
terminal virtual machine.
A capability can be seen as a gateway object containing a reference to the actual
object and the access rights for it (see figure 6). For a single object multiple
capabilities can exist. For example one view with only read access and another with
full access rights. A capability object is automatically generated by a stub compiler.
Input for the stub compiler is the user defined view. This view is written in a special
Interface Definition Language (IDL) resembling a Java interface.

Figure 6 Structure of a capability [10]

14 JavaCards As Secure Objects Network

As an example: consider two applets, a bank applet and a client applet. The bank
applet manages account objects and has full rights for them. The client applet is
granted limited access to his own account. The account object implements the
Account interface specified in listing 1.

Listing 1 Account interface

The application developer can specify two views. One for the bank object and one
for the client object. These views are shown in listings 2 and 3. The single difference
between the two views is the keyword not before the writeBalance method.

Listing 2 Bank view

Listing 3 Client view

These two views serve as input for the Stub compiler. It generates the BankAccount
and the ClientAccount shown in listings 4 and 5.

Listing 4 Bank account capability

public class BankAccount implements Account {
 Account account;

 public BankAccount(Account account) {
 this.account = account;
 }

 int readBalance() {
 return account.readBalance();
 }

 void writeBalance(int balance) {
 account.writeBalance(balance);
 }
}

view ClientView implements Account {
 int readBalance();
 void not writeBalance(int balance);
}

view BankView implements Account {
 int readBalance();
 void writeBalance(int balance);
}

public interface Account {
 int readBalance();
 void writeBalance(int balance);
}

Chapter 2 State of the art 15

Listing 5 Client account capability

Instead of giving the actual Account implementation, the bank object which is
shown in listing 6 supplies the ClientAccount capability to its clients and
BankAccount to itself. The Java virtual machine exhibits access to objects not
explicitly given as a parameter of a method or as a result of a method. Therefore a
client object cannot invoke the actual writeBalance method, because it does not
have a reference to the actual Account implementation.

L

W
d
e
b
s
r
[
t

public class Bank {
 public Account getAccount(String accountNumber) {
 ...
 }
}
public class ClientAccount implements Account {
 Account account;

 public ClientAccount(Account account) {
 this.account = account;
 }

 int readBalance() {
 return account.readBalance();
 }

 void writeBalance(int balance) {
 throw new Exception(“Illegal access”);
 }
}

isting 6 Bank object

hen the invocation involves two virtual machines, the problem becomes more
ifficult. Inside a single virtual machine the byte codes are verified before they are
xecuted. It is impossible to forge a reference to a capability which is not obtained
y either a parameter or a method result. When using a remote method invocation
cheme the references are encoded into an APDU. The caller may forge the
eference. To prevent this a password protection scheme is added. From the paper
10] it does not become clear how the passwords are exchanged between card and
erminal.

Chapter 3 Requirements specifications 17

3 Requirements specifications
Before writing down the requirements specification of a system it is a good practice
to define some possible scenarios in which the system will be used. Section 3.1
describes some of these scenarios. Before distilling the requirements some security
threats are discussed in section 3.2.

3.1 Possible scenarios

3.1.1 Access card for a building
A smart card can be used as a substitute for a normal key. A normal key typically
fits into a single lock. If a person wants to open doors with different locks, he has
to carry all the keys.
If the building doors are equipped with card readers, a person has to carry only one
card. There are two approaches how a door can decide if a card (and its owner) is
allowed to pass through the door.
It is possible to give each door a different symmetrical key (for instance a DES-key).
Each user who is allowed to open the door can upgrade his card by some
authentication authority with the door’s symmetrical key. The door can check if the
card has the same encryption key, by sending a random challenge and checking the
response (see figure 7).
This scheme works fine, unless the person’s card gets lost or stolen. In order to
protect the building against entering of the finder or the thief, the door’s key has to
be changed. All the cards containing the old key have to be updated too. A possible
solution to this is to supply different keys to each user and different keys for each
door. In practice this means that every 〈smart card, door〉 pair uses its own key.
Granting a smart card entrance through the door involves updating both the smart
card and the door while in the first case only the card was updated.

Smart card Door

Challenge

Calculate
response

Calculate
expected
response

Response Check
response

Figure 7 Access to a building

Another approach is the use of asymmetric encryption. Each card has its own
private key. A certification authority can grant a person access to the building by
signing a certificate stating that the card owning the private key which corresponds
to the public key written on the certificate is granted access. The certificate can be
stored on the card itself or at another place accessible by the door.
Now, the card sends the signature of the challenge to the door. The door checks the
signature by validating it with the public key written on the certificate. It also checks
the signature of the certificate itself.
In case of theft the certificate can be added to a revocation list being checked by the
door.

18 JavaCards As Secure Objects Network

3.1.2 Substitute for passport
The same scheme described in paragraph 3.1.1 about the access card for a building
can be applied to more cases. At all places where a person has to prove his identity
such a smart card can be used. It can serve as a substitute for a passport, because a
passport has the same purpose: identification of the cardholder.

3.1.3 Software license management
A great frustration of many software developers is the making of illegal copies of
their products. Nowadays software is “personalised” by entering a serial code or a
license key when installing the software. But the serial code is as simple to copy as
the software itself. Smart cards can be used to securely store the license key. The
license key can be checked only at installation or each time the application starts. As
a customer buys more software protected with a smart card, he should not be
frustrated by switching smart cards when switching to another application. So it
should be possible to move a license key from one card to another. In [1] there is an
description a method to do so, without copying the license key. After moving the
license key from card A to B, card A has become useless and can be thrown away.

3.1.4 Electronic purse
A smart card equipped with an electronic purse is a substitute for the more
conventional wallet. However, although it is possible to pay with your electronic
purse in a shop, it is impossible to pay your friends with it. As a complete substitute
for the conventional wallet, it should be possible to move some “money” from one
purse to another. It looks like the movement of software licenses between cards
(see 3.1.3).

3.1.5 Health care card
In some cases it is preferable to store a part of someone’s medical data on a smart
card instead of storing it in the local database of a hospital. In case of an emergency
the person carries its own medical data. The information stored has to be protected
against unauthorized reading and writing. Only a limited number of people (for
instance medical specialists) should be granted access to that part of the medical
data which is necessary to perform their job. Before the card grants access to the
data, it should authenticate the user.

3.1.6 Electronic Toll System
In some countries it is commonplace to demand toll for using certain roads.
Nowadays, the toll fees have to be paid at tollbooths. This means that each car has
to stop, with reduction of traffic flow as a consequence. Smart cards can be used to
pay the toll while driving at normal speed.
The toll can be paid before or after driving on the toll road. In case of postpaid
cards (like credit cards), the car driver will receive a bill at the end of the month. It
is almost impossible to preserve anonymity of the vehicle. A recent study in
Germany [2] shows that many people want to be anonymous when driving on a toll
road.
In case of prepaid cards, however, the anonymity of the car driver can be assured.

3.1.7 Digital signature
Digital signatures are used in many cases. The main purpose of sending a message
with a digital signature is to ensure that the message is written by the person who
signed it and has not been tampered with. The main problem of using digital
signatures is the storage of the keys. If a private key were stored on a computer,
everybody who has access to that computer can copy it. If the private key were

Chapter 3 Requirements specifications 19

stored on a smart card, nobody can copy it. However, the card can be lost or stolen.
An online revocation list can be used to check if a key is still valid.

3.2 Threats
In section 3.1 several systems were discussed that deal with security. Each scenario
is different and carries its own security threats. You can ask three questions for
each: “Who is cheating?”, “Why is he cheating?” and most important “How is he
cheating?”
In the example of the access card three parties are involved: the legal card holder,
the service provider and a third party (the burglar). The legal card holder possesses a
card which gives him access to the door. For that door he has no reason to cheat;
he has got access and that is all he wants. However, he may want to cheat with
other doors to which he is not allowed access. It is practically impossible to add a
key for another door. He has to know the door key. But even if the door key is
known the legal card will undoubtedly refuse it to be added without proper authen-
tication of the uploading terminal.
Most of time the service provider is considered trustworthy. He provides the door
access system and the smart cards. He can build back doors in the system. For
instance, a master key which can open all doors. But the service provider has no
reason for cheating unless he is a burglar himself.
A burglar wants to gain illegal access to the building. He may have many reasons to
do so, but we are not going to discuss the motives for burglary. Question remains,
how he can cheat the system. He does not have a legal entrance card. It is pretty
useless to make a fake one, since he does not know which keys are being used.
Probably the only way to find the key is to try them all. A smart card is pretty slow
compared to computers. He therefore can better use a laptop computer in
combination with a hardware device that will fit into the door’s slot.

As far as the software license card is concerned, the following parties are involved:
the software developer, the card manufacturer, the legal software user and the illegal
software user. Gaining rights to use the software is not an issue for the software
developer himself. The card manufacturer has to be trusted. He sells “security” and
wants to keep his reputation of being trustworthy. The legal software user has
bought the software product and should not have to cheat. That leaves the illegal
software user. His aim is to use the software without payment or to copy the
software many times while buying it once. The first aim can be achieved by
removing the smart card check from the software. Because this has nothing to do
with smart card security it will not be dealt here. The second aim can be reached by
copying the license key to a fraudulent card. The original smart card will be
destroyed, but the new one can be copied freely, since it is written by the hacker
himself.

In the case of an electronic purse many parties are involved. The bank usually is also
the card issuer and the overall security system developer. Gaining trustworthiness is
not easy because security is threatened by malicious persons in all the parties that
are involved: merchants, card holders and thieves. The aim of all of them is making
money.
A merchant decreases the card balance with the permission of the card holder. The
card holder presses the “Yes” button (or sometimes its PIN code) to confirm the
transaction. The merchant can than decrease the card balance and gain the money.
Normally the transaction is carried out only once, but a malicious merchant will try
to carry it out several times, each time gaining money. Another way to gain more
money is to increase the amount after the customer’s confirmation. The customer
confirms the amount that is shown on the display, but a larger amount is being
subtracted from the card.

20 JavaCards As Secure Objects Network

The card holder has two possibilities for cheating: add money by faking a bank
terminal or decrease the amount of a transaction.
A thief can act as a man-in-the-middle redirecting the money to its own purse.

Medical data is considered confidential. Different parties have access to different
parts of the data. The card holder should be able to see all the data. He therefore
has no reason to cheat. Third parties (insurance companies, for instance) may be
interested in data to which they are not granted access. They will examine the
firewall around the applet to find holes in it or back doors. Another approach can
be to unseal the chip and read the EEPROM directly.

The parties involved in the electronic toll system are the government and the car
driver. The government is responsible for installing the tool booths and distributing
the smart cards. A frequent car driver may want to install a fake card into his car to
avoid payment. The faked card simulates the official smart card.

3.3 Requirements
From the scenario’s described above the following requirements can be distilled:
• Authentication should be possible in each direction: it should be possible for

the card to authenticate the third party (the card should verify if the merchant is
indeed a merchant) and for the third party to authenticate the card (the door
checks if the card is a valid building pass). In the software license case the
original license card should authenticate the other card before transferring its
license key.

• Some information should be stored securely (the door key) while other
information may be read by anybody (purse balance).

• A single object can be accessed by different parties. Access rights differ
depending on the role in which the user is logged in.

• Communication between the client application and the smart card sometimes
contains confidential information (health care data). Such a communication
session should therefore be encrypted.

• Authenticity of data should be guaranteed when needed.
• Some methods should only be carried out once (purse transaction).
• Key management and key distribution are important issues. It is important

where to store the various keys.
• It should be possible to specify all these security requirements without each

time reinventing the wheel. The implementation of the application should be
separated from the security. This results in cleaner code and the security has
only to be verified once and for all. Of course it should be possible to specify
which security requirements are necessary for each method. The best way to
store this specification is in a separate file. This could be a text file written in
some Interface Definition Language (IDL).

Chapter 4 Design 21

4 Design
The prerequisite of the design is to build a framework in which security issues are
separated from the actual implementation. The framework is set up to simplify the
task of building secure smart card systems. The only task an applet developer has to
perform is writing the software like any other Java application and specifying the
security requirements. The general design [12] is sketched in section 4.1. The
security requirements specification is written in a separate Jason definition file (see
section 4.3). The Jason framework will handle network communication (section 4.2)
and data marshalling (section 4.4) as well as security (section 4.5) and naming
(section 4.6).

4.1 General design
Secure Method Invocation (SMI) allows a caller object to securely call a method of a
callee object. Both caller and callee are assumed to be stored and run in a protected
environment that is called a sandbox. A surrounding firewall disables access to all
objects within the sandbox except through published interfaces.
The Jason SMI layer provides the following services:

• authentication of caller and callee
• role based access control at the method level
• confidentiality and authenticity of method parameters and results

To call an object’s method, the caller first has to connect to the callee in a particular
role. To establish a connection, the caller needs a stub corresponding to the object
to connect to. Similarly, the callee needs a skeleton that receives incoming
connections, performs access control decisions and protects the method parameters
and results. In fact, the skeleton is the card applet selectable by its Application
IDentifier (AID). The session starts with selecting the applet and logging in. During
login the identity of the role is checked and a session key is agreed upon. This
session key will be used for encrypting the confidential data. The role keys are used
when authenticity has to be guaranteed.
Once connected, the caller can call all methods declared by the object as accessible
to this role. For Jason, roles are equivalent to keys. In other words, ownership of a
particular key proves that an object can connect in that role.
The role keys used to authenticate the caller to the callee are stored in a separate key
store object belonging to the same sandbox. The key stores on the card side and the
client side contain the same roles, but do not have to be the same. When
asymmetric encryption is used for authenticating a client, the public role key is
stored on the card and the private role key on the client.
The stub and skeleton needed to securely call the methods of an object are
generated automatically from a so called Jason Definition File (see section 4.3). This
file specifies the security requirements for the callee object.

4.2 Network
Figure 8 shows the network topology that the Jason framework uses. Several smart
cards and applications are connected by a network. The smart card as well as the
application environment are supposed to run within a firewall. The application
environment may physically be connected to the smart card reader, but they also
may be separated by a network.
The application does not invoke the applet’s method directly. Secure Method
Invocation (SMI), like Remote Method Invocation (RMI), uses stubs and skeletons.
RMI stubs and skeletons handle marshalling of parameters and return values, while

22 JavaCards As Secure Objects Network

SMI also handles encryption. The SMI stubs and skeletons are connected with
related key stores.

Key-
Store

Skeleton

Applet's
implemenation

Key-
Store

Stub

Application

Internet

Figure 8 Topology

4.3 Jason definition file
In order to make the security protection transparent to the applet programmer, the
Java language is extended by some keywords. The new keywords are accessible to,
authentic and confidential. You can compare these with the standard keywords
private, protected and public. These keywords only occur in the Jason interface
definition file. The grammar of the Jason interface definition language is given in
appendix A.1.
Authentic attributes are signed with a key corresponding to the given role name.
The signature for all authentic attributes is appended to the message. Confidential
attributes are encrypted using a symmetric session key.
The authenticity of the off-card application will be checked if the method is marked
with the accessible to keyword. The card identity will then be checked too. The
authenticity of the on-card methods will only be checked if the authentic keyword
is present in the Jason modifier. The check occurs before the attributes are sent to
the card. The method’s result, if present, is signed by the applet.

4.3.1 accessible to keyword
The accessible to keyword is followed by a role name. A role name can be seen as
an alias for an signature key. The keyword can be placed before the method
definition (see listing 7). Only the third party that can be authenticated as Bank have
rights to invoke the method. The authenticity of the card will also be checked.

Chapter 4 Design 23

Listing 7 accessible to keyword

4.3.2 authentic keyword
The authentic keyword can be placed before the return value of the method or
before one or more parameters. The data values marked as authentic are
cryptographically signed ensuring that the data originates from the role. Freshness
of an authentic method is ensured by signing a freshness counter. The counter is
increased each time the signature key is used. This prevents re-invocation
(increasing the purse balance several times, for example).

4.3.3 confidential keyword
Parameters and return values marked as confidential are encrypted using a
symmetrical cipher. The session key is established during logging in.

4.4 Protocol Data Units
The application calls the stub’s methods like any other Java object. The data
between them is exchanged with normal parameters and return values. Since both
the application and the stub reside in the same sandbox the communication has not
to be secure.
In section 4.3 we have seen that four types of parameters exist: plain text,
confidential, authentic and both confidential and authentic. These parameters are
shown schematically in figure 9 as PP, CP, AP and ACP.

PP1 ... PPp

CP1CP1 ... CPq

ACP1 ... ACPr

AP1 ... APs
Figure 9 Different parameter types

The stub concatenates them to a large data block (see figure 10). See section 4.5 to
see how the Confidential and Signature block are calculated.

class Purse {
 private short balance;

 accessible to Bank
 public void increase (short amount) {
 balance += amount;
 }
}

24 JavaCards As Secure Objects Network

PP1 ...

AP1 ...

Signature

PPp

APs

Lp

Lc Confidential

La

LsCount

Figure 10 All parameters concatenated

Each type of parameter is preceded by a length byte. The L bytes contains the
lengths of all the parameter blocks.
This whole parameter block is embedded in the command APDU shown in figure
11. The APDU header is set to the default RMI invocation header: CLA=0x80,
INS=0x38, P1=0x02 (major version number), P2=0x02 (minor version number).
The JC-RMI header contains the object and method identifier. This command
APDU is sent through the terminal to the card.

Parameters

CLA INS P1 P2 Lc

JC-RMI header

Figure 11 Command APDU

The command APDU shown in figure 11 is transformed by several card services
that are called in sequence. First a decrypt service will transform it to the APDU
shown in figure 12. Although not clear from the figure, the parameters are shuffled
back to their original sequence. The decrypted command APDU conforms to the
JC-RMI specification [7]. Therefore the standard RMIService object can then be
used for the unmarshalling of the parameter block to the individual parameters. It
also does the actual method invocation.

CLA INS P1 P2 Lc

JC-RMI header

PP1 ...

AP1 ...

PPp

APs

CP1 ... CPq

ACP1 ... ACPr

Figure 12 Decrypted command APDU

When the method invocation does not throw an exception, a normal response
APDU is created. Figure 13 shows the layout of the APDU. The value of Tag byte
is 0x81. The return value is the value returned from the invoked method. SW1 and
SW2 form the status word. When no errors occur SW has a value of 0x9000. Other
values indicate an error caused by the JavaCard virtual machine. When the invoked
method causes an exception to be thrown, an exception response APDU (see figure
14) is created. A tag value of 0x82 indicates that the response APDU contains an
exception. The type field identifies the exception. Only the standard exceptions
have a number assigned. See for these numbers appendix B.5. Therefore no other
exceptions should be thrown by the invoked method. The reason field further

Chapter 4 Design 25

specifies the exception. The status word SW will have a value of 0x9000 when no
other errors have occurred besides the exception thrown by the invoked method.

Tag return value SW1 SW2
Figure 13 Normal response APDU

Tag type reason SW1 SW2

Figure 14 Exception response APDU

An exception response APDU is returned to the terminal without modification. A
normal response APDU is eventually transformed by an encrypt service to an
encrypted and/or signed form. Figure 15 shows all possible transformations: plain,
authentic, confidential or both. The count field is used to guarantee freshness.

Tag return value SW1 SW2

Tag SW1 SW2

signature

confidential

CountTag SW1 SW2confidential

signatureCount

Tag SW1 SW2return value

Figure 15 Transformed response APDU

4.5 Security
It is highly inefficient to encrypt each confidential parameter on its own. Many
encryption algorithms use fixed size input blocks. DES for example uses input
blocks of 8 bytes. If the input block is not a multiple of the block size, padding will
be used. The last incomplete block will be appended by a padding block. But this
means that if you have 5 confidential byte parameters a total of 35 (= 5 * 7) bytes
are wasted. It is much more efficient to concatenate the 5 bytes together and
append a padding of only 3 bytes. In order to concatenate the confidential
parameters they should be shuffled so that they lay adjacent to each other. The
single parameters of figure 9 are shuffled to the sequence shown in figure 16.

CP1 ... ACP1 ... Padding

Confidential

CPq ACPr

Figure 16 Confidential calculation

ACP1 ... AP1 ...

Signature

ACPr APsJC-RMI header Count

Figure 17 Signature calculation

26 JavaCards As Secure Objects Network

The same reason for grouping the confidential parameters holds for the authentic
parameters. A single signature is sufficient for all authentic parameters. This is
sketched in figure 17. When the method is marked as accessible to a role the JC-
RMI header and the freshness counter are signed too in order to prevent malicious
modification of the object and method identification.
For return values the grouping is not necessary to shuffle because a return value
only consists of a single value. For a confidential result this result will be encrypted
with the session key. An authentic result is concatenated with the freshness counter
and the signature.

4.6 Naming
In order to select an applet on the card, you have to know the Applet IDentifier
(AID). The AID consists of 5 to 16 bytes. The first 5 bytes are called the Resource
IDentifier (RID). ISO controls the assignment of RIDs to companies, with each
company obtaining its own unique RID from the ISO [6]. The remaining bytes can
be assigned by the company itself.
For the sake of simplicity an Applet Name Service will be used to map applet names
to AIDs much like the more famous Domain Name Service (DNS) which maps
host names to IP numbers.

Chapter 5 Using SMI 27

5 Using SMI
It is pretty simple to write an applet using Jason. Normally an applet developer has
to write a subclass of javacard.framework.Applet and handle the APDU exchange.
When using Jason, the implementation can be written as a normal Java object. This
implementation is free of APDU exchange and security issues. These issues will be
handled by the Skeleton generated by the Jason pre-compiler. Before the pre-
compiler can do its job, it has to know the security requirements. Therefore, the
applet developer should supply a Jason interface definition file. The interface
definition language that is being used in this file has been explained in section 4.3.
The Jason file is the only input for the pre-compiler. It produces a Java interface, a
Skeleton and a Stub (not displayed in figure 18). The Java interface is nothing else
than the Jason definition file stripped from all keywords not known in Java. The
implementation should implement this interface. The skeleton is the actual
javacard.framework.Applet subclass.
The skeleton, the implementation and the interface will be compiled and uploaded
as described in section 2.2.

Make Java
Interface

Java Interface

Upload to
smartcard

Smart card

Make skeleton

Skeleton (card) implementscalls

JASON
Interface
definition

Implementation

Figure 18 Skeleton generation

The generated stub is the counterpart of the skeleton. It too implements the
generated interface (see figure 19). In the following sections we will give an example
of the whole trajectory.

28 JavaCards As Secure Objects Network

Make Java
Interface

Java Interface

Make Stub

Stub (client)

Client

implements

Upload to
client

JASON
Interface
definition

Figure 19 Stub generation

5.1 Writing JASON definition file
Let’s take the electronic purse as an example. An electronic purse has three main
functions. It should be possible to ask for the balance, increase it and decrease it.
Let’s name these functions getBalance, increaseBalance and decreaseBalance. Each
function has a different security policy. Only the bank and the owner of the
electronic purse should be able to get the balance. The increase function can only be
accessed by the bank and the decrease function by a merchant. Listing 8 shows a
possible Jason definition file. We saw that there are three parties that can access the
purse: the card owner, the issuing bank and all merchants. In Jason these parties are
called roles. The access to the getBalance function is restricted to the bank and the
card owner. The result value, the actual balance, is considered non-confidential. The
increaseBalance function can only be accessed by the bank. It carries a single
parameter. The parameter should be signed because the value of the amount should
not be tampered with. Changing the value of the amount will be detected, because
then the signature is not valid any more. Furthermore, the bank considers the
amount confidential. Nobody can tap the line between the bank and the card to
read the amount of money that is deposited on the card. The decreaseBalance function
is only accessible by a merchant. The amount parameter is authentic because the
card owner should not be able to substitute the amount for a smaller amount.

Chapter 5 Using SMI 29

Listing 8 Jason definition file

5.2 Generating interface
The Jason pre-compiler gets the input file given in listing 8 and produces the Java
interface given in listing 9.

L

5.3 W
T
l
a
h
p
c
e
T
i

package com.mybank;

import javacard.framework.UserException;

public interface Purse {
 roles MERCHANT, BANK, OWNER;

 accessible to OWNER, BANK
 public short getBalance();

 accessible to BANK
 public void increaseBalance(
 confidential authentic short amount)
 throws UserException;

 accessible to MERCHANT
 public void decreaseBalance(
 authentic short amount)
 throws UserException;
}
package com.mybank;

import javacard.framework.UserException;

public interface Purse {
 public short getBalance();
 public void increaseBalance(short amount)
 throws UserException;
 public void decreaseBalance(short amount)
 throws UserException;

isting 9 Generated interface

riting implementation
he implementation of the generated interface is written by hand and shown in

isting 10. Notice the way exceptions are thrown. Normally you throw an exception
s throw new UserException(“Negative amount detected”);. On a JavaCard
owever, strings are not implemented. That’s why UserException uses a reason
arameter of type short. Furthermore, a JavaCard has no automatic garbage
ollection. It is perfectly legal to throw each time a new exception, but each
xception will occupy a little amount of memory that will not be disposed.
herefore all JavaCard exceptions have a static throwIt function. It throws a static

nstance of the exception.

}

30 JavaCards As Secure Objects Network

Listing 10 Purse implementation

5.4 Generating Skeleton
Listing 11 shows the generated skeleton. The skeleton extends javacard.frame-
work.Applet and is therefore selectable by sending a select APDU command. The
security requirements that are lost in the transformation from the Jason Definition
File (JDF) to the interface file are encoded in the JDF array. See appendix A.2 for
the encoding being used. In the constructor a dispatcher is given a sequence of
services. Before and after the purse service is called the Session service, that is
initialised with an empty key store, will transform the APDU from secure data to
plain text and vice versa.

package com.mybank;

import javacard.framework.UserException;

public class PurseImpl implements Purse {
 public static final short
 NEGATIVE_AMOUNT = 1,
 NEGATIVE_BALANCE = 2;

 private short balance;

 public PurseImpl() { balance = 0; }

 public short getBalance() { return balance; }

 public void decreaseBalance(short amount)
 throws UserException {
 if (amount < 0)
 UserException.throwIt(NEGATIVE_AMOUNT);
 if (balance-amount < 0)
 UserException.throwIt(NEGATIVE_BALANCE);
 balance -= amount;
 }

 public void increaseBalance(short amount)
 throws UserException {
 if (amount < 0)
 UserException.throwIt(NEGATIVE_AMOUNT);
 balance += amount;
 }
}

Chapter 5 Using SMI 31

Listing 11 Generated skeleton

5.5 Generating Stub
The generated stub file is almost equal to a stub file that is generated by the
standard rmic compiler. The only difference is the presence of a JDF array similar

package com.mybank;

import javacard.framework.*;
import javacard.framework.service.Dispatcher;
import javacard.framework.service.RMIService;

public class Purse_Skel extends Applet {
 private Dispatcher dispatcher;
 private static final byte[] JDF = {
 (byte) 0x03, (byte) 0xec, (byte) 0xa8,
 (byte) 0x01, (byte) 0x03, (byte) 0x03,
 (byte) 0x00, (byte) 0xe5, (byte) 0x8b,
 (byte) 0x01, (byte) 0x02, (byte) 0x00,
 (byte) 0x01, (byte) 0x33, (byte) 0x33,
 (byte) 0x7e, (byte) 0x01, (byte) 0x01,
 (byte) 0x00, (byte) 0x01, (byte) 0x23};

 public Purse_Skel() {
 dispatcher = new Dispatcher((short) 4);
 Purse purse = new PurseImpl();
 Session session = new Session(
 new KeyStore((short) 4), JDF);
 dispatcher.addService(session,
 Dispatcher.PROCESS_INPUT_DATA);
 dispatcher.addService(session,
 Dispatcher.PROCESS_COMMAND);
 RMIService rmiService = new RMIService(purse);
 dispatcher.addService(rmiService,
 Dispatcher.PROCESS_COMMAND);
 dispatcher.addService(session,
 Dispatcher.PROCESS_OUTPUT_DATA);
 register();
 }

 public static void install(
 byte[] buffer, short offset, byte length) {
 new Purse_Skel();
 }

 public boolean select() {
 return true;
 }

 public void process(APDU apdu)
 throws ISOException {
 dispatcher.process(apdu);
 }
}

32 JavaCards As Secure Objects Network

to the one used in the skeleton and a getJDF function. This function is specified by
the Stub interface.

L

5.6 P
T
T
p
b

5.7 C
T
S
v
p
l

package com.mybank;

import java.rmi.Remote;
import java.rmi.server.RemoteStub;

public final class PurseImpl_Stub
 extends RemoteStub
 implements Purse, Remote, Stub {

 /*
 Code similar to code generated by the rmic
 compiler
 ...
 */

 private static final byte[] JDF = {
 (byte) 0x03, (byte) 0xec, (byte) 0xa8,
 (byte) 0x01, (byte) 0x03, (byte) 0x03,
 (byte) 0x00, (byte) 0xe5, (byte) 0x8b,
 (byte) 0x01, (byte) 0x02, (byte) 0x00,
 (byte) 0x01, (byte) 0x33, (byte) 0x33,
 (byte) 0x7e, (byte) 0x01, (byte) 0x01,
 (byte) 0x00, (byte) 0x01, (byte) 0x23};

 /* Specified by Stub interface */
 public byte[] getJDF() {
 return JDF;
 }

isting 12 Generated stub

ersonalization
he KeyStore that is instantiated in the skeleton (see listing 11) is initially empty.
he internal array of keys is filled with null pointers. During the personalization
hase keys can be downloaded to the card. The phase is irreversible. A role key can
e downloaded once. Subsequent downloads result in a security exception.

lient application
he client application may look like listing 13. First an instance of the Applet Name
erver is created. In the example given here the default values are used. The default
alues are stored in a properties file located somewhere in the classpath. The
roperty file used here is given in listing 14. The host and port values specify the

ocation of the terminal. The keystore value gives the location of the local keystore.

}

Chapter 5 Using SMI 33

L

L

5.8 R
B
c

package com.mybank;

public class Client {
 public static void main(String[] args) {
 KeyStore keyStore = ...
 Ans ans = new Ans(keyStore);
 Purse purse = (Purse)
 ans.getApplet("jcrmi.server.Purse",
 Purse.ROLE_BANK);
 try {
 System.out.println("Balance: " +
 purse.getBalance());
 purse.increaseBalance((short) 25);
 System.out.println("Balance after increase: "
 + purse.getBalance());
 }
 catch (UserException ue) {
 switch (ue.getReason()) {
 case PurseImpl.NEGATE_AMOUNT:
 System.out.println(
 "You tried to increase or decrease " +
 "with a negative amount");
 case PurseImpl.NEGATIVE_BALANCE:
 System.out.println(
 "Negative balance not allowed");
 }
 }
 }

isting 13 Client application

isting 14 Applet Name Server properties file

unning
efore being able to run the applet it should be compiled and uploaded to the smart
ard. This has been explained in section 2.2.

host = localhost
port = 8080
com.mybank.Purse = 0x33:0x04:0x00:0x00:0x00:0x00

}

Chapter 6 Implementation 35

6 Implementation
In the previous chapters we have seen how the Jason system is designed and how it
can be used. In this chapter we take a look at how the system is implemented. We
start with a general overview before we dig into the details.

6.1 Layering possibilities
Naturally the Secure Method Invocation system (RMI) uses the JavaCard Remote
Method Invocation (JCRMI). The question is: should we implement SMI on top of
RMI or vice versa or SMI besides RMI (see figure 20)? The first option seems most
natural, but both options have some disadvantages. By “SMI on top of RMI” I
mean the situation in which the application uses the SMI layer while not using the
RMI layer directly.

RMI

SMI

Stub

Application

RMI

SMI

Stub

Application

RMISMI

Stub

Application

Figure 20 Layering possibilities

6.1.1 SMI on top of RMI
Let’s start with the “SMI on top of RMI” situation. Because the Stub is generated
by the Jason pre-compiler it can fully cooperate with the SMI layer. In theory they
could be merged into a single layer, but that is not efficient. Consider multiple
applets on a smart card. It is far better to have some small Stubs and a single (larger)
SMI layer than multiple big Stubs. Therefore the stubs should be as small as
possible. Because the SMI layer is static (that is, not generated), it does not have the
knowledge of the security requirements of the applet. The stub has to give this
information to the SMI layer. For example, it can send the method parameters
along with the requirements in sequence to the SMI layer. The SMI layer then
shuffles these parameters to create contiguous data blocks with the same security
requirements. These blocks can be encrypted and/or signed and concatenated to a
single byte array. This byte array is supplied to the RMI layer as a parameter of a
remote method.
The big disadvantage of this layering possibility is the limited use of the RMI layer.
The RMI layer is only used to transport a byte array from the client to the terminal.
A lightweight socket connection could have solved the same problem. In fact the
main part of the RMI layer, the marshalling and unmarshalling of parameters is
done twice. The parameters are first marshalled to get a (secured) byte array and
then this byte array is marshalled by the RMI layer into another byte array.

6.1.2 RMI on top of SMI
In paragraph 6.1.1 we encountered the problem of double marshalling. When the
RMI layer is placed on top of SMI this problem can be solved. The parameters are
first marshalled to an unsecured byte array in the RMI layer. The SMI layer
transforms this to a secure byte array.
The RMI layer is used in the true sense: marshalling of parameters. However the
SMI layer is supplied only with an unsecured byte array. It has no knowledge of the
security requirements. It does not know which parameters should be encrypted and

36 JavaCards As Secure Objects Network

which ones should be signed. Furthermore, where to look for the encryption keys?
They cannot be supplied through the RMI layer.

6.1.3 SMI besides RMI
In paragraph 6.1.2 the problem of the double marshalling of paragraph 6.1.1 is
solved creating a new one. This problem can be solved by placing the SMI and RMI
layers besides each other. Before invoking remote methods, the SMI layer is
initialised with a key store containing all the keys that the applet may use. The SMI
layer consists of many classes that are shared with multiple clients. The object
instances, however, are run within the client sandbox. At a remote method
invocation request the SMI layer asks the stub for the security requirements. The
generated stub implements the Stub interface. This interface specifies the getJDF
method. An implementation of the Stub interface will return a byte array containing
the security requirements of all methods of the stub. The grammar that is being
used for the JDF array is given in appendix A.2. The SMI layer gets the object ID
and the method ID from the marshalled data and searches the JDF array to find the
security requirements.

6.2 Architecture
In section 6.1 we discussed the layering possibilities. The best way is placing the
SMI and the RMI layers at the same level next to each other. Figure 21 shows the
total architecture of both the client and the card. At the client side the application
accesses two objects. Firstly it instantiates the Applet Name Service (ANS) and
provides it a with key store. Secondly it asks the ANS for a stub object given a
remote interface name and a role for logging in. After the obtainment of the stub
object the application can use it like any other Java object.
The stub object calls JCRemoteRefImpl inside the JavaCard RMI layer in order to
marshal the parameters to a byte array. Normally this byte array is given to a
CardAccessor. A CardAccessor has an exchangeAPDU(byte[] data) method which
transmits the data to the card accepting device in which the card is present. The
generated card applet receives the data. Along with the JDF array it sends the data
to the Session service which decrypts the data and checks the signature. The plain
data conforms to the JavaCard RMI specification and therefore can be used directly
by the RMIService. The RMIService unmarshals the data and calls the implemen-
tation. The response follows the opposite direction.

Applet

Session
Service RMIService

Implementation

Application

Card Client

direct link

Stub ANS

CardAccessor

RMI SecureCard
Accessor

Figure 21 Direct connection

When the client is physically separated from the card accepting device by a network
a slightly different architecture is being used (see figure 22). The CardAccessor itself
has become a remote object. All objects are static accept the application and
implementation which are written by the programmer and the Stub and the Applet
which are generated by the Jason pre-compiler.

Chapter 6 Implementation 37

Applet

Session
Service RMIService

Implementation

Card

direct
link

RemoteCard
Accessor

internet
connection

Terminal

Application

Client

Stub ANS

RemoteCard
Accessor_Stub

RMI SecureCard
Accessor

Figure 22 Internet connection

6.3 Jason pre-compiler
As discussed in section 6.2 the client stub and card applet are generated by the
Jason pre-compiler. Not displayed in figure 22 is the interface that the client stub
and the card implementation implement. This interface is generated too. All three
files are generated by jason.compiler.Main. This object contains three methods, one
for each file. They share the same JDF parser. The parser parses the .jason files into
an intelligible format. Because most of the functionality resides in the static objects
of the Jason framework, the tree generated files could be kept very small.

6.3.1 Java interface generator
The interface is very simple. It removes all the non-native Java keywords. It also
adds constants for each role in the file. Unfortunately it is impossible to add the
JDF array to the interface. For the client side there is no problem, but the interface
file is removed by the CAP file converter. The CAP file converter only accepts
constants if they are of primitive type (byte, boolean, short or int). That is the
reason why the JDF array is located in both the card applet skeleton and the client
stub.

6.3.2 Skeleton generator
The skeleton extends javacard.framework.Applet. Almost all code is static. Only the
JDF array and the instantiating of the implementation object are variable. The JDF
array follows the grammar of appendix A.2.

6.3.3 Stub generator
Of the three generated files the client stub is the most difficult one. It is also the
biggest one, but that does not matter since it is run on a client computer with much
more system resources than a smart card has. The stub file very much resembles a
stub file that is generated with the standard rmic tool. There is only one difference:
the stub implements the Stub interface. The getJDF method that is specified in the
Stub interface returns the JDF array.

6.4 Key management
Keys are stored at the smart card as well as on the client computer. The way they
are stored differs. At the smart card the keys are stored in a KeyStore object
permanently, since JavaCard objects are persistent. At the client side the KeyStore
object must be serialized to disk. It is the application’s task to store the file at a
secure place.
For each role in the Jason Definition File (see appendix A.1) a key is inserted in the
key stores. When asymmetric encryption is used the private keys are stored at the

38 JavaCards As Secure Objects Network

client and the public keys on the card. There is one role for which the opposite is
true: the card role. The card role is not specified in the Jason Definition File but is
used to authenticate the card. When symmetric encryption is used the same
symmetric key is stored on the card as well as on the client.
To limit the code size of the card applet the keys are generated at a secure client
station. The personalization phase consists of generating key(pair)s and
downloading them to the card. The personalization phase is irreversible since keys
can only be downloaded once.
The keys that are stored serve only for authentication purposes and for signing data.
The encryption of confidential data is done with a symmetric encryption algorithm.
The secret session key is generated on-the-fly by the card and given to the client
after authentication has completed. Session keys are never stored at the client and
placed in the RAM memory on the card, so that it will be removed when the card is
ejected.

6.5 Naming
In section 4.6 the necessity of an Applet Name Service was discussed. In the current
implementation of the Jason framework the Applet Name Service is implemented in
the Ans object. This object reads a property file like listing 14 of section 5.6. In
future versions of the framework the property file will be replaced by a network of
Applet Name Servers like the international network of Domain Name Servers for
solving Internet addresses.

Chapter 7 Testing 39

7 Testing
Testing smart card application is a delicate task. An applet is not easily debugged.
After downloading an applet to the card, the code is not visible any more. Therefore
standard debugging environments cannot be used. The only way of communication
with the applet is through APDU exchange. When an unexpected error occurs an
ISO exception is thrown resulting in a status word of 0x6F00 which means
“something went wrong”. Furthermore most smart cards will destroy themselves
when encountering unexpected behaviour. So after loosing 5 smart cards (of $ 20,--
each) I decided to do the rest of the testing with a simulator. Sun provides two
separate simulators. They are discussed in section 7.1. Unfortunately, forced by the
American export regulations, the simulators do not implement any security
algorithms. In section 7.2 I will discuss my solution to this problem. In section 7.3
some tools are discussed. Unfortunately the JavaCard Development Kit is not free
from bugs (section 7.4).

7.1 Two simulators
Sun provides two simulators [8]: JCWDE and C-JCRE. JCWDE is written in Java
and C-JCRE in C.

7.1.1 JCWDE
The Java Card Workstation Development Environment (JCWDE) simulates the
card environment. The JCWDE is not an implementation of the Java Card virtual
machine, but it uses the Java virtual machine to emulate the JavaCard Runtime
Environment. Debugging is straightforward, since standard debugging environ-
ments can be used. Furthermore it is possible to let applet do things that are
normally not allowed, printing a String to the standard output for instance. But be
careful to remove all this when actually downloading the applet to the card. It is not
necessary to follow the whole trajectory sketched in figure 3 in section 2.2. You only
need the class files.
The following aspects are not implemented in the JCWDE:

• package installation
• applet instance creation
• persistent card state
• firewall
• transactions
• transient array clearing
• remote method invocation
• applet deletion
• package deletion

Unfortunately remote method invocation is not implemented. Therefore this tool is
useless for debugging the Jason framework which heavily depends on it.

7.1.2 C-JCRE
The C-language Java Card Runtime Environment (C-JCRE) implements the
JavaCard virtual machine using the C language. Simulation with C-JCRE much
more resembles the real situation than the JCWDE simulator. The C-JCRE acts as a
real smart card. All communication to and from the C-JCRE is performed by
APDU’s. In contrary to JCWDE it is necessary to run through the whole trajectory
of figure 3 in section 2.2. The scriptgen and apdutool are explained in more detail in
section 7.3. C-JCRE simulates the EEPROM with a disk file. The state of the applet
will be remembered between two sessions.

40 JavaCards As Secure Objects Network

The latest JavaCard specification (2.2) contains a CrefCardTerminal. This class
extends the OCF CardTerminal class. It makes it possible to plug the cref tool
(implementing the C-JCRE) into the OCF framework [9]. This framework is used
inside the JC-RMI implementation.

7.2 Crypto implementations
Due to export restrictions of the United States of America, the JavaCard Develop-
ment Kit [8] is shipped without crypto implementations. Only the framework
specified by the JavaCard specification is present. For example, there is a
javacard.security.RandomData class, but the getInstance method will always generate a
security exception, stating that no implementation is present. An actual smart card
will be shipped with a different javacard.security.RandomData class that will
implement the getInstance method correctly.
Not only the RandomData implementation is missing. Also the implementation of
the Signature and the Cipher class is not available. While implementing the Jason
security framework, the missing of the crypto implementation is not very practical.
Therefore I had two options: buy lots of smart cards with crypto implementations1
or write my own crypto implementation. On financial grounds I chose the latter.
Since the crypto implementation is only necessary for testing in the simulator I did
not spend much time to write real secure algorithms. Instead I use a simple XOR
mechanism for both the Signature and the Cipher. It is totally insecure but at least it
gives the possibility to test the security framework.

7.3 Scriptgen and Apdutool
All communication with a smart card is done with APDU’s. Downloading a CAP
file to the card is no exception. The scriptgen tool that is shipped with the JavaCard
Development Kit [8] translates a CAP file into a sequence of command APDU’s
and stored in a script file. This script file is read by the apdutool which sends it to
the C-JCRE. The scriptgen tool and apdutool only work in conjunction with C-
JCRE. A real smart card may have a different applet installer that will use different
command APDU’s.

7.4 Bugs in the JavaCard Development Kit
The cref tool has an option to show the resource consumption. Before and after a
card session the amount of memory that is allocated as well as the amount that is
still free are shown. It is split into the different types of memory: stack, EEPROM,
transaction buffer, RAM which is cleared on reset and RAM that is cleared on
deselect. The JavaCard Development Kit 2.2 simulates cards with 384 bytes of
stack, 16 kB of EEPROM (of which 2718 bytes are used for the virtual machine),
2 kB of transaction space, 256 bytes of clear-on-reset-RAM and 128 bytes of clear-
on-deselect-RAM. The RAM part of the memory should be deallocated when the
smart card is ejected (simulated by sending a power down command to cref that will
exit then). However, the RAM memory is not freed when cref starts up. Only when
the applet explicitly asks to free the memory with a call to JCSystem.requestObject-
Deletion() the memory will be cleared the next time cref starts up. However, after
uploading an applet cref allocates 163 bytes of clear-on-reset-RAM and 25 bytes
clear-on-deselect-RAM. That leaves only 93 bytes of clear-on-reset-RAM and 103
bytes of clear-on-deselect-RAM. This memory is never cleared. Even when object
deletion is requested. The memory leak is not due to the uploaded applet, since the
same memory is lost when only the commands “Power Up” and “Power Down”
are sent to cref. This bug has already been submitted to Sun.

1 A large number of smart cards is necessary, since most errors lead to destroying
the card.

Chapter 7 Testing 41

Another deficiency in the JavaCard Development Toolkit is the failure of the native
code. The javacard.framework, javacard.security and javacardx.crypto packages all
use native code. The native code is entirely encapsulated in the cref tool. When
using JC-RMI some parts of the packages are used also at the client side. However
on the client side the native codes are not present. There should have been a
dynamic link library (Windows) or a .so package (Linux / Solaris) containing the
native code. You can proof the failure of the native code by throwing an exception
on the card. The JC-RMI specification [7] tells us that the exception is transported
by value to the client where it is thrown again. But throwing a UserException for
instance results in an UnsatisfiedLinkError.
I have solved this deficiency by writing parts of the missing native code myself. The
native code is written in C++ and compiled to NativeMethods.dll. This DLL is
statically linked to the Applet Name Server by loading it with System.load-
Library(“NativeMethods”). I hope that Sun will ship the native codes in their next
JavaCard Development Kit.

Chapter 8 Conclusions and future work 43

8 Conclusions and future work
The prerequisite of the Jason framework was to make the development of a
network of cooperating JavaCard applets as simple as possible. In section 5 we
followed a real world example through all the steps. Most steps are automated by
using the Jason pre-compiler. A solid design has resulted in a lightweight framework
in which the generated skeletons and stubs are kept as small as possible. The main
part of the framework consists of a static collection of objects that does not have to
be rebuild for each applet. This increases the efficiency when uploading multiple
applets to a single card.
The framework has been revised entirely to make use of the new JavaCard remote
method invocation specification. In June 2002 Sun introduced with the new
JavaCard 2.2 specification [6,7,8]. Before that time the Jason framework used its
own kind of remote method invocation which was not compatible with the new
standard. Also new in version 2.2 was the existence of card services and
dispatchers. In the old specification there was only one logical channel between a
card and its terminal. In the new specification up to four logical channels may exist.
The Jason framework has not yet been revised to take advantage of this. In future
versions of the Jason framework multi-tasking may be added.
Some other modifications to the Jason framework are possible:

• Modification of role keys after personalising the card can be made possible.
The putKey method of the KeyStore object can be protected much like
other methods by adding a accessible by keyword.

• The Applet Name Server can be extended. The local properties file
containing the applet names and the AID’s can be substituted to a system
like the Domain Name Service. AID’s are managed by ISO and are globally
unique. There is an apparent similarity between AID and IP numbers. This
Applet Name Server can also provide the stubs. A remote class loader may
obtain the stubs from the server instead of searching for them in the local
classpath.

• To make the applets as small as possible, I chose to store only one key per
role. When memory of smart cards increases, multiple keys can be stored
for each role. Each key can be used with its own encryption algorithm.
Before connecting to a card applet a handshake can take place in which
encryption algorithm are agreed upon.

The secure method invocation scheme of the Jason framework [12] will be
presented at the CARDIS 2002 conference. The conference will be held in San José
at November 21 and 22.

Chapter 9 References 45

9 References
[1] T. Aura and D. Gollman, Software License Management with Smart Cards, in

USENIX Workshop on Smartcard Technology, 1999
[2] W. Rankl and W. Effing, Smart Card Handbook, second edition, 2000
[3] http://java.sun.com/products/javacard
[4] International Organisation for Standardisation (ISO), JTC 1/SC 17. ISO/IEC

7816 Identifcation cards – Integrated circuit(s) cards with contacts
[5] Sun Microsystems Inc, Java remote method invocation specification, Tech. rep, 1999,

Revision 1.7
[6] Sun Microsystems Inc, JavaCard™ 2.2 Virtual Machine Specification, June 2002
[7] Sun Microsystems Inc., Java Card™ 2.2 Runtime Environment (JCRE) Specifi-

cation, June 2002
[8] Sun Microsystems Inc., Java Card™ 2.2 Development Kit User’s Guide, June 2002
[9] OpenCard Framework, http://www.opencard.org/
[10] D. Hagimont, J.-J. Vandewalle, JCCap: capability-based access control for Java Card,

CARDIS 2000
[11] J.-J. Vandewalle, E. Vétillard, Developing Smart Card -Based Application using Java

Card, 3rd Smart Card Research and Advanced Applications Conference,
September 1998

[12] R. Brinkman, J.H. Hoepman, Secure Method Invocation in Jason, University of
Twente and Nijmegen, November 2002, to be presented in CARDIS 2002
conference proceedings

Appendix A Jason Definition File Grammar 47

A Jason Definition File Grammar
The Jason Definition File can be specified in a text file with the jason extension.
The grammar is given in A.1. The text file is parsed by the Jason pre-compiler.
Internal the Java Definition File is represented in a byte array. The grammar for this
array is given in A.2.

A.1 .jason file format

Listing 15 Jason interface definition grammar

A.2 JDF array

Listing 16 JDF array

jdf {
 u1 number_of_methods
 method[number_of_methods] methods
}

method {
 u2 method_id
 u1 number_of_roles
 u1[number_of_roles] role_id
 u1 return_modifier
 u1 number_of_parameters
 u1[number_of_parameters] parameter_modifiers
}

interface -> java_modifier "interface"
 <interface_name> "{" member* "}"
java_modifier -> scope ["final"]
scope -> ["public" | "protected" |
 "private"]
member -> variable | method | roles
variable -> scope "static final" type
 <variable_name>
method -> "public" jason_modifier type
 <method_name> "(" attributelist
 ");"
jason_modifier -> ["accessible to" rolelist]
 security
roles -> "roles" <rolelist> ";"
rolelist -> <role_name> ["," rolelist]
security -> ("confidential" | "authentic")*
attributelist -> attribute ["," attributelist]
attribute -> security type <attribute_name>
type -> ("byte" | "boolean" | "short" |
 "int") ["[]"]

48 JavaCards As Secure Objects Network

The format of all modifiers follows the same bit structure. The least significant
nibble specifies the type:
-----***: 000=void, 001=byte, 010=boolean, 011=short, 100=int, 101=object
----*--- : 1=array
The most significant nibble specifies the security requirements:
--**----: 00=plain, 01=confidential, 10=authentic, 11=confidential+authentic

Appendix B JCRMI data formats 49

B JCRMI data formats
JCRMI uses two types of command APDU’s for selecting an applet and for
invoking a method. The structure is specified in sections B.1 and B.2. The rest of
appendix B specifies the grammar for all types of parameter encoding and response
messages.

B.1 Select APDU command format
CLA 000000xx - The least significant two bits are used for logical channels
INS 0xA4 - SELECT FILE
P1 0x04 - Select by AID.
P2 000x00xx - Return FCI information. The bits b2 and b1 are used for partial
selection if supported. If bit b5 is 1, the remote reference descriptor uses the
remote_ref_with_interfaces format, otherwise it uses the alternate
remote_ref_with_class format.
Lc xx - Length of the AID
Data - AID of the applet to be selected (between 5 and 16 bytes)
select_response {
 u1 fci_tag = 0x6F
 u1 fci_length
 u1 application_data_tag = 0x6E
 u1 application_data_length
 u1 jc_rmi_data_tag = 0x5E
 u1 jc_rmi_data_length
 u2 version = 0x0202
 u1 invoke_ins
 union {
 normal_ref_response normal_initial_ref
 normal_null_response null_initial_ref
 error_response initial_ref_error
 } initial_ref
}

B.2 Invoke APDU command format
CLA 1000xxxx - b4 and b3 for secure messaging (ISO 7816-4) and b2 and b1 for
logical channels
INS - invoke_ins returned in the previous select_response
P1 02 - RMI major version #
P2 02 - RMI minor version #
Data - As described below
The data part of the request command is structured as:
invoke_data {
 u2 object_id
 u2 method_id
 param parameters[]
}

B.3 Remote Object Reference Descriptor
remote_ref_descriptor {
 union {
 ref_null remote_ref_null
 remote_ref_with_class remote_ref_c

50 JavaCards As Secure Objects Network

 remote_ref_with_interfaces remote_ref_i
 }
}
ref_null {
 u2 remote_ref_id = 0xFFFF
}
remote_ref_with_class {
 u2 remote_ref_id <> 0xFFFF
 u1 hash_modifier_length
 u1 hash_modifier[hash_modifier_length]
 u1 pkg_name_length
 u1 package_name[pkg_name_length]
 u1 class_name_length
 u1 class_name[class_name_length]
}
remote_ref_with_interfaces {
 u2 remote_ref_id <> 0xFFFF
 u1 hash_modifier_length
 u1 hash_modifier[hash_modifier_length]
 u1 remote_interface_count
 rem_interface_def
 remote_interfaces[remote_interface_count]
}
rem_interface_def {
 u1 pkg_name_length
 u1 package_name[pkg_name_length]
 u1 interface_name_length
 u1 interface_name[interface_name_length]
}

B.4 Parameter encoding
param {
 u1 value[]
}
boolean_param {
 u1 boolean_value
}
byte_param {
 s1 byte_value
}
short_param {
 s2 short_value
}
int_param {
 s4 int_value
}
null_array_param {
 u1 length = 0xFF
}
boolean_array_param {
 u1 length <> 0xFF
 u1 boolean_value[length]
}
byte_array_param {
 u1 length <> 0xFF

Appendix B JCRMI data formats 51

 s1 byte_value[length]
}
short_array_param {
 u1 length <> 0xFF
 s2 short_value[length]
}
int_array_param {
 u1 length <> 0xFF
 s4 int_value[length]
}

B.5 Return value encoding
return_response {
 u1 tag
 u1[] value
}
normal_param_response {
 u1 normal_tag (= 0x81)
 param normalValue
}
normal_null_response {
 u1 normal_tag (= 0x81)
 ref_null null_array_or_ref
}
normal_ref_response {
 u1 normal_tag (= 0x81)
 remote_ref_descriptor remote_ref
}
exception_response {
 u1 exception_tag = 0x82
 u1 exception_type
 s2 reason
}
java.lang.Throwable = 0x00
java.lang.ArithmeticException = 0x01
java.lang.ArrayIndexOutOfBoundsException = 0x02
java.lang.ArrayStoreException = 0x03
java.lang.ClassCastException = 0x04
java.lang.Exception = 0x05
java.lang.IndexOutOfBoundsException = 0x06
java.lang.NegativeArraySizeException = 0x07
java.lang.NullPointerException = 0x08
java.lang.RuntimeException = 0x09
java.lang.SecurityException = 0x0A
java.io.IOException = 0x0B
java.rmi.RemoteException = 0x0C
javacard.framework.APDUException = 0x20
javacard.framework.CardException = 0x21
javacard.framework.CardRuntimeException = 0x22
javacard.framework.ISOException = 0x23
javacard.framework.PINException = 0x24
javacard.framework.SystemException = 0x25
javacard.framework.TransactionException = 0x26
javacard.framework.UserException = 0x27
javacard.security.CryptoException = 0x30

52 JavaCards As Secure Objects Network

javacard.framework.service.ServiceException = 0x40
exception_subclass_response {
 u1 exception_subclass_tag = 0x83
 u1 exception_type
 s2 reason
}
error_response {
 u1 error_tag = 0x99
 s2 error_detail
}

	Introduction
	State of the art
	ISO 7816
	JavaCard
	Connecting to smart cards through terminals
	OpenCard Framework
	JCRMI

	Security of smart cards
	JavaCard
	JCCap

	Requirements specifications
	Possible scenarios
	Access card for a building
	Substitute for passport
	Software license management
	Electronic purse
	Health care card
	Electronic Toll System
	Digital signature

	Threats
	Requirements

	Design
	General design
	Network
	Jason definition file
	accessible to keyword
	authentic keyword
	confidential keyword

	Protocol Data Units
	Security
	Naming

	Using SMI
	Writing JASON definition file
	Generating interface
	Writing implementation
	Generating Skeleton
	Generating Stub
	Personalization
	Client application
	Running

	Implementation
	Layering possibilities
	SMI on top of RMI
	RMI on top of SMI
	SMI besides RMI

	Architecture
	Jason pre-compiler
	Java interface generator
	Skeleton generator
	Stub generator

	Key management
	Naming

	Testing
	Two simulators
	JCWDE
	C-JCRE

	Crypto implementations
	Scriptgen and Apdutool
	Bugs in the JavaCard Development Kit

	Conclusions and future work
	References

