
Int. J. Inf. Secur. (2007) 6:393–402
DOI 10.1007/s10207-007-0033-y

SPECIAL ISSUE PAPER

Breaking four mix-related schemes based on Universal
Re-encryption

George Danezis

Published online: 19 July 2007
© Springer-Verlag 2007

Abstract Universal Re-encryption allows El-Gamal cipher-
texts to be re-encrypted without knowledge of their
corresponding public keys. This has made it an enticing build-
ing block for anonymous communications protocols. In this
work we analyze four schemes related to mix networks that
make use of Universal Re-encryption and find serious weak-
nesses in all of them. Universal Re-encryption of signatures
is open to existential forgery; two-mix schemes can be fully
compromised by a passive adversary observing a single
message close to the sender; the fourth scheme, the rWon-
Goo anonymous channel, turns out to be less secure than the
original Crowds scheme, on which it is based. Our attacks
make extensive use of unintended “services” provided by the
network nodes acting as decryption and re-routing oracles.
Finally, our attacks against rWonGoo demonstrate that anon-
ymous channels are not automatically composable: using two
of them in a careless manner makes the system more vulner-
able to attack.

Keywords Universal re-encryption · Anonymous
communications · Traffic analysis

1 Introduction

Anonymous communications are an important building block
for secure electronic elections, e-cash and the use of anony-
mous credentials in identity management systems. Without
anonymity at the communication layer any higher level pri-
vacy preserving property can be defeated, simply by using
network addressing to link all actions to the same user.

G. Danezis (B)
K.U. Leuven, ESAT/COSIC, Kasteelpark Arenberg 10,
3001 Leuven-Heverlee, Belgium
e-mail: George.Danezis@esat.kuleuven.be

Similarly the actions of a user using anonymous e-cash or
anonymous credentials for identity management could all
be linked together by observing the network layer. To avoid
such profiling users may want to communicate to third par-
ties without revealing their network identity, or other char-
acteristics—in this way they are empowered to manage the
information they reveal to third parties, and avoid unintended
inferences that may have been made based on their iden-
tity. Communicating without revealing identity information
is therefore the objective of anonymous communications.

An important technique to achieve anonymous commu-
nication is the mix, an anonymizing relay, first proposed by
Chaum [2]. In his scheme messages to be anonymized, on
their journey from Alice to Bob, are first encrypted under
the public keys of all intermediate mixes. The messages are
then relayed by all mixes in succession that decrypt them,
effectively pealing off a layer of encryption at the time, and
forwarding them to the next mix. As a result an observer of
the network should find it hard to link senders and receivers
of messages.

Many mix based systems, inspired from this architecture,
have been designed and deployed [4,12,16]. They all use a
hybrid encryption scheme, that combines the necessary pub-
lic key cipher with a symmetric key cipher for bulk encryp-
tion. This technique keeps the computational cost of running
a mix low, and allows more messages to be mixed together.
Yet this architecture suffers from replay attacks: the same
message, if routed twice in the mix network, will at each
stage decrypt to bitwise exactly the same plaintext. To pre-
vent adversaries from making use of this property to facilitate
traffic analysis, most schemes keep track of the messages pro-
cessed and refuse to process them again. The storage cost is
proportional to the number of messages processed.

An alternative approach—also with the independent
advantages of proofs of robustness—relies on mixed

123

394 G. Danezis

messages being re-encrypted instead of decrypted. In such
schemes [17,18] messages are encrypted using the El-Gamal
public key cipher [8], and each mix node re-encrypts them
on their way. Finally all messages are decrypted by a thresh-
old decryption scheme [23] at the end of the route. The
re-encryption is randomized, and replaying a message will
lead to different intermediate messages in the network. The
re-encryption operation does not require any secrets, but
requires the knowledge of the public key used for encryp-
tion.

Golle et al. [10] proposed a scheme, named Universal
Re-encryption, that does away with the requirement to know
the public key, under which a ciphertext was encrypted, to be
able to re-encrypt it. A plaintext m encrypted under public
key (g, gx) has four components (using fresh k, k′):

UREx (m) := (a, b, c, d) := (gk′, (gx)k′ ; gk, (gx)k · m) (1)

Such a ciphertext can be re-encrypted by anyone, and become
unlikable to the original one using fresh z, z′:

(a′, b′, c′, d ′) := (az′ , bz′ ; az · c, bz · d) (2)

Note that the re-encrypted product of Universal Re-encryp-
tion is a valid cipher text of message m, encrypted under the
secret key x , i.e., UREx (m).

The Universal Re-encryption primitive itself, and its exten-
sions [9], are believed to be secure. In this work we study the
applications of this primitive, in the context of anonymous
communications, that turn out to have numerous weaknesses.

First we demonstrate that the attempt of Klonowski
et al. [13] to make re-encryptable RSA signatures is inse-
cure, and vulnerable to existential forgery. Then we consider
the mix scheme of Klonowski et al. [14] and Gomulkiewicz
et al. [11] that attempt to use Universal Re-encryption to build
replay resistant mix networks. Their schemes can be attacked
by a passive adversary that observes the message ciphertext at
just one point, close to the sender Alice. Finally we consider
the rWonGoo scheme by Lu et al. [15]. The scheme takes
into account that the careless use of Universal Re-encryption
is susceptible to tagging attacks, and a variant of re-encryp-
tion is used. Yet rWonGoo fails to protect against all attacks,
and we demonstrate that it is in fact weaker then the simple
Crowds [21] anonymity scheme. We propose a fix to make
rWonGoo as secure as Crowds, yet the heavy cryptography
used becomes superfluous.

2 Breaking the “Universal Re-encryption of signatures”

The mix schemes of Klonowski et al. [14] and Gomulkiewicz
et al. [11] make use of a particular signature scheme on uni-
versally re-encrypted ciphertexts to ensure that the mixed
messages are not modified by the network. In this section
we show that this scheme is not secure. The weakness of this

signature scheme contributes to the insecurity of those
mixing schemes that is fully explored in the next sections.

Klonowski et al. [13] extend the universal re-encryption
scheme by Golle et al. [10], that allows ElGamal [8]
ciphertexts to be re-encrypted along with a valid RSA [22]
signature. The transform is key less, and can be performed
by any third party. The key feature of the Klonowski et
al. scheme is that the signature associated with the cipher-
text remains valid, despite the ciphertexts being modified
through re-encryption. Schemes with such properties have
the potential to be used in anonymous credential, e-cash and
electronic election schemes, as well as a plethora of other
application in the field of privacy enhancing technologies.
Unfortunately their scheme is insecure since signed cipher-
texts can be combined, without the knowledge of any signing
secrets, to produce valid signatures.

Assuming that N = pq with p and q being two ran-
dom large primes and let g be in Z

∗
N . All operations are per-

formed modulo N , unless otherwise stated. For a message m
an authority creates an RSA signature md (d being its signa-
ture key). To encrypt the message to a public key y = gx , the
authority chooses uniformly at random two values k1 and k2.
A cipher text in the Klonowski et al. scheme is composed of
the following elements:

(α0, β0;α1, β1;α2, β2;α3, β3)

:= (m · yk0 , gk0; yk1 , gk1; (m · yk0)d , (gk0)d;
(yk1)d , (gk1)d) (3)

It corresponds to an ElGamal encryption of the message,
and an ElGamal encryption of the element 1 (necessary to
perform a key-less re-encryption), along with an RSA [22]
signature (exponentiation using d) of all these elements. To
re-encrypt the ciphertext anyone can choose two values k′0
and k′1, an perform the following operation:

(α0 · αk′0
1 , β0 · βk′0

1 ;α
k′1
1 , β

k′1
1 ;α2 · αk′0

3 , β2 · βk′0
3 ;α

k′1
3 , β

k′1
3) (4)

Klonowski et al. propose to accept the signature as valid if
α0 = αe

2 holds, where e is the public verification key, cor-
responding to the signature key d (the RSA property is that
e · dmod(p − 1)(q − 1) ≡ 1 ⇒ ae·d modN ≡ amodN).
This unfortunately does not guarantee that the ciphertext has
not been modified, and does not therefore provide neither
integrity nor non-repudiation as a signature scheme should.

2.1 Attacking the scheme

The attack relies on the algebraic properties of RSA, in that
the product of two signatures, results in the signature of the
product, or more formally md

0 · md
1 = (m0 · m1)

d . There-
fore if an attacker knows a signed plaintext m′, (m′)d , it can

123

Breaking four mix-related schemes based on Universal Re-encryption 395

construct a valid Klonowski et al. ciphertext by multipying
it into another ciphertext in the following way:

(α0 · m′, β0;α1, β1;α2 · (m′)d , β2;α3, β3) (5)

The verification equation holds since α0 ·m′ = m ·m′ · yx =
(m · yk · (m′)d)e = (α2 · (m′)d)e. The known plaintext and
signature can therefore be multiplied into a valid ciphertext,
at any stage, and produce another valid plaintext.

An adversary can also use two valid but unknown cipher-
texts signed and encrypted to the same keys, and combine
them to produce another valid, and apparently signed cipher-
text.

(α0 · α′0, β0 · β ′0;α1, β1;α2 · α′2, β2 · β ′2;α3, β3) (6)

Which would be a valid ciphertext since m · yk
0 · m′ · yk′0 =

((m · yk
0)d · (m′ · yk′0)d)e. Therefore an adversary can use

ciphertexts, with unknown plaintexts and combine them into
another valid ciphertext. This leads to existential forgery.

3 A brief overview of mixing

Traditional mix networks allow Alice and Bob to exchange
messages without any third party, or the other correspondent
learning their network address. Three key properties that mix
networks provide are

− Sender anonymity. Allows Alice to send a message to
Bob without revealing her identity.

− Receiver anonymity. Allows Bob to respond to Alice
without learning or knowing her identity. This is made
possible by the use of special cryptographic tokens called
reply blocks, given to Bob by Alice.

− Bidirectional anonymity. The sender and receiver
anonymity properties are combined to allow Alice and
Bob to communicate with each other without revealing
either network identities. There is a need for a special
rendez-vous service, called a nym server, that acts as a
first point of contact.

Chaum presented mixes [2], the first proposal to realize
anonymous communications. A mix node is a trusted server
that acts as a relay for messages to be anonymized. Its key
security function is to hide the correspondences between its
input messages and the output messages. To achieve this the
bit patterns of the messages as well as the associated traffic
data must be modified in such a way to make linking of input
and output messages difficult.

To frustrate attempts to trace messages using their con-
tents mix systems use encryption. Alice encrypts, in a special
way [5], the message to be sent to Bob under the public key
of the mix. (All efficient and strong anonymous communi-
cation schemes have to use public key cryptography—less

efficient but provably secure ones, like DC networks [3] use
conventional cryptography). The mix decrypts the message,
retrieving the plaintext and the address of Bob, and forwards
the message to Bob.

The encryption scheme used must have special proper-
ties, since its prime objective is to prevent likability rather
than provide secrecy. Encryption must generate ciphertexts
of equal sizes to avoid the adversary using size information
to link messages. Furthermore the encryption scheme should
ensure that a modification of the input message, by an active
adversary, does not leak any information that may link the
input message to an output message. Conventionally, this
is achieved by using a plaintext aware encryption scheme:
the mix dismisses any message that does not decrypt cor-
rectly. Mix schemes that allow replies also use fragile packet
formats that ensure that all information is cryptographically
destroyed if an adversary tampers with the input message.

An adversary may attempt to link messages by their pat-
terns of arrival and departure from the mix. For this reason a
mix does not act as a first in, first out queue, but instead waits
for a number of messages to arrive before sending them out
in a random order. Different batching strategies [6] are used
to disrupt the timing correlations between input and output
messages.

Finally a traditional mix should never process the same
message twice. This would lead to the same output messages,
and this correlation would allow an adversary to link them. A
traditional way of ensuring this is adding expiry timestamps
to messages, and keeping a list of processed messages that
have not yet expired. If a received message is already on this
list it is dropped.

Multiple mixes can be combined together to offer
anonymity as part of a mix network. Multiple mixes on one
hand spread the need to trust them: a single honest mix on
the path should guarantee the anonymity of the message. On
the other hand multiple mixes allow for more messages to
be processed in the network. In such cases Alice encrypts
her messages using multiple layers, and the keys of the dif-
ferent mixes that should decrypt the message. The appro-
priate routing information, pointing to the next mix, is also
included in the encrypted messages for the message to fol-
low the predetermined path. At each stage the message is
received, decrypted, batched and sent out to its next des-
tination by the intermediate mixes until it reaches its final
destination.

Many variants of mix networks have been proposed in the
literature, and some have been implemented and deployed
[4,12,16]. The most important variant, as far as our work is
concerned, are universally verifiable mix network. Those
follow the same principle as traditional mixes in that consecu-
tive routers hide the correspondences between input and out-
put messages. Yet they differ from Chaum’s original design
in that re-encryption of ciphertexts is used to hide the

123

396 G. Danezis

bit-patterns of messages and all mixes are arranged in a
cascade of fixed order. All mixes in the cascade re-encrypt the
input messages, and a final stage of (threshold) decryption
reveals their plaintext.

The neat mathematical structure of the messages, that are
usually El-Gamal ciphertexts [8], allows for efficient proof
techniques to be used by the mixes to prove in zero-knowl-
edge that the output is a permutation of the decrypted inputs.
The state of the art in such proofs is described in [1,17]. The
universal verifiability property makes them the candidate of
choice for implementing the anonymity requirements of elec-
tronic election protocols, where losing or substituting votes
is of particular concern.

The two mix systems we examine [11,14] are rather
unusual in that they use encoding schemes based on Uni-
versal Re-encryption [10], that one would expect to see in
universally verifiable systems. Yet the network structure can
be arbitrary (instead of a fixed cascade), and the decryption
operation is distributed across all nodes on the path. The fact
that zero-knowledge proofs of correct mixing, encryption and
decryption are not used opens the way for our attacks. Previ-
ous attacks [19] have made use of similar techniques against
the first generation of verifiable mixes [18].

4 Breaking onions based on Universal Re-encryption

In Klonowski et al. [14] and Gomulkiewicz et al. [11] two
very similar mix format schemes based on Universal
Re-encryption are described. The first paper [14] discusses
how such construction can be used to route messages in the
mix network, including mechanisms for reply blocks and
detours [12]. The second paper [11] claims that the use of
Universal Re-encryption makes the mix scheme invulnera-
ble to replay attacks. We will show that both schemes are
vulnerable to tracing attacks by an adversary that observes
the sender injecting an onion into the network, has the ability
to use the network, and controls one corrupt mix.

The encoding schemes proposed are very simple. The
sender (or a third party as described in [14]) wants to send
a message m though a sequence of mixes J1, J2, . . . , Jλ+1,
to the final receiver Jλ+1. The public keys corresponding to
each node Ji are globally known and are yi = gxi . Each
address and the message are universally re-encrypted using
El-Gamal in sequence:

UREx1(J2), UREx1+x2(J3), . . . ,

UREx1+x2+···+xλ(Jλ+1), UREx1+x2+···+xλ+1(m) (7)

UREx (m) denotes the ciphertext one gets by perform-
ing universal re-encryption on the message m under private
key x . Note that only the public component y = gx of the
private key x is required to perform this operation.

Routing and decryption are taking place in parallel. The
onion is first relayed to J1, that uses its secret key x1 to decode
all blocks, retrieve J2 and forward the message. There is no
discussion in [11,14] about removing the blocks that have
been decoded, or adding blocks to pad the message to a fixed
size, but these can easily be done to hide the position of dif-
ferent mixes on the path and the overall path length.

4.1 Attacking the scheme

The objective of the adversary is to trace a message coming
out of a sender, say Alice, to its ultimate destination, say Bob.
In such a case we say that an attacker has fully broken the
anonymity of a scheme. The confidentiality of the contents
of the message is orthogonal to the anonymity properties of a
system, and can be ensured using end-to-end encryption. For
this reason we focus our attack on finding out the receivers
of messages sent by users.

Universal re-encryption, UREx (m), of a plaintext has
some important properties that make our attacks possible.
The ciphertext UREx (m) has two components: an ElGamal
encryption of 1 under the public key gx and the encryption
of the message m under the same public key.

UREx (m) ≡ (gk1
1 , gk1x

1 , gk2
2 , gk2x

2 m) (8)

It is possible for anyone that knows UREx (m) to encrypt
an arbitrary message m′ under the same public key. Simply
chose random k3, k4 and encode the message m′ by multi-
plying it by the blinded encryption of 1:

UREx (m
′) ≡ ((gk1

1)k3 , (gk1x
1)k3 , (gk1

1)k4 , (gk1x
1)k4 m′) (9)

Given UREx (m) it is easy to further encrypt it under an addi-
tional, arbitrary, key xa and get UREx+xa (m) without the
knowledge of the secret x :

UREx+xa (m) ≡ (gk1
1 , (gk1

1)xa · gk1x
1 , gk2

2 , (gk2
2)xa · gk2x

2 m)

(10)

An interesting property is that UREx (m′) is indistinguishable
from UREx (m) by anyone who does not know the secret key
x . Even if a party knows x it is impossible to determine that
UREx (m′) was derived from UREx (m).

We further note that each mix in fact acts as a decryption
oracle:

1. The mix Ji receives an onion composed of universally
re-encrypted blocks.

. . . , URExi (Ji+1), URExi+xi+1(Ji+2), . . . ,

URExi+xi+1+···+xλ+1(m) (11)

123

Breaking four mix-related schemes based on Universal Re-encryption 397

2. The mix Ji decrypts all blocks using its secret xi . The
result is

. . . , Ji+1, URExi+1(Ji+2), . . . , URExi+1+···+xλ+1(m)

(12)

3. The mix reads the next address Ji+1. If it is not well
formed it stops (or starts the traitor tracing procedure
described in Sect. 4.5 of [11]). Otherwise it re-encrypts
all blocks and sends the resulting message to Ji+1.

Using the properties of universal re-encryption and the
protocol that each mix implements an attacker that observes
a message can trace it to its ultimate destination. Each block
UREx1+···+xi (Ji+1) is replaced by a block that redirects the
onion to the corrupt node A followed by another block that
contains the next address encrypted under the public key of
the corrupt node xa . A “label” block that is the encryption of
a fixed, per onion, label L has to also be included in order to
be able to run multiple tracing attacks in parallel.

UREx1+···+xi (Ji+1)

← UREx1+···+xi (A), UREx1+···+xi+xa (Ji+1),

UREx1+···+xi+xa (L) (13)

Each mix Ji on the route will decode the message with-
out realizing that it has been modified. Furthermore it will
decode the block containing the address of the next mix Ji+1

and the label L . The decoded message will contain:

. . . , A, URExa (Ji+1), URExa (L), . . . (14)

The address A is interpreted by the honest mix Ji as the first
address and the decoded message is redirected there. Once
the adversary received it he can decode URExa (Ji+1) and
URExa (L) using his secret xa to retrieve the next node Ji+1

and the label L , respectively.
The attack results in the path of the traced onion becom-

ing J1, A, J2, A, J3, A, . . . , A, Jλ+1, as illustrated in Fig. 1.
The attacker is able to receive the onion every time it exists

Fig. 1 After intercepting Alice’s mix packet, the attacker redirects the
message to themselves

a mix, decode the next address and the label L , and re-insert
it in the correct node to continue the tracing.

Our attack only requires a brief observation of the net-
work to capture the onion to be traced. After that the onion
is modified, and the mixes will not only decode the next
address, but also forward that information to the attacker
node. Therefore there is no need to perform any further
passive or active attacks against messages in the network.
Note that such onions can be traced even after they have been
routed, since no duplicate detection mechanism is imple-
mented. A replay prevention mechanism is difficult to
implement in the context of universal re-encryption since all
ciphertext (even of the same plaintext) are unlinkable without
all the keys.

The fact that onions in a mix network are required to be
of fixed size does not foil the attack. Since the linkage of the
different parts of the message is so weak, it is possible to
remove the tail blocks to allow for enough space to modify
the message, as described above, to trace the connection. In
case the message is too short to do this, it is still possible to
perform the tracing in multiple steps, that only require replac-
ing (over-writing) one section of the message to redirect it
to the adversary. Then the same message is injected in the
network with the next section/header overwritten to re-direct
to the attacker again until the final recipient is found.

4.2 Replay and tagging attack

Besides the attack described above, the design in [11] fails
to protect against replay attacks. An attacker can embed a
tag that can be recognized after each mix Ji has processed
the packet: he simply appends to or replaces the last block of
the message with URE∑

xi+xa (L). Once the message is pro-
cessed the output will contain URExa (L), which the adver-
sary can decode to retrieve the label L . If the same message
is inserted again it will output a message with the the same
label, which leads to the classic replay attack.

Lu et al. [15] also point out that the scheme is susceptible
to tagging attacks similar to those first proposed by Pfitz-
mann [19]. Their attack allows a corrupt receiver to trace the
message and uncover Alice as its sender. They correctly point
out that this attack is outside the threat model of Klonowski
et al. [14] and Gomulkiewicz et al. [11], since they assume
that Alice and Bob trust each other. Our attacks do not make
this assumption, and allow an arbitrary third party that acts
as an active adversary and controls one node to fully trace
and decrypt the messages exchanged.

5 Weaknesses of the rWonGoo scheme

Lu et al. [15], note that Universal Re-encryption is suscep-
tible to tagging attacks, but also propose rWonGoo, a novel

123

398 G. Danezis

anonymous communications scheme based on re-encryption.
rWonGoo was designed to protect against tagging attacks,
where an adversary modifies a message to trace it through the
networks, and replay attacks, where a message is replayed to
help tracing. We next provide a quick description of rWon-
Goo that will help us highlight its vulnerabilities (a full
description is provided in [15]).

rWonGoo is broadly inspired by the Crowds anonymiza-
tion scheme [21], and aims to be deployed in a decentralized
network of thousands of peers. It assumes that an adversary is
prevented from snooping on the network by link encryption,
but may also control a fraction of nodes to assist the attack.
The communication in rWonGoo is divided into two phases.
In the fist phase the channel is opened through the network
between Alice and Bob, and the keys necessary to perform the
re-encryption are distributed to all nodes through the chan-
nel. In the second phase messages between Alice and Bob
can be exchanged. They start off being encrypted under the
keys of all intermediary nodes, that each decrypt, re-encrypt
and forward messages.

An rWonGoo channel is composed of two types of relay-
ing nodes: those that perform re-encryption and those that
are simply re-routing the message. The nodes that perform
re-encryption, shall be called Pi (for 1 ≤ i ≤ λ) with
El-Gamal keys (g, yi) respectively, while those that simply
redirect shall be called Q j (no keys are necessary since only
redirection is taking place at nodes Q j). Conceptually all
communication between P nodes is done using a Crowds
anonymous channel over Q nodes. In some sense rWonGoo
routes already on top of a crowds anonymous channel. The
final node Pλ is assumed to be Bob, the ultimate recipient of
the anonymous messages from Alice (also P0).

The channel establishment protocol is of special interest
to an attacker. Alice first picks a node P1 and extends her tun-
nel to it. This extension is done using the crowds protocol,
until node P1 is reached. The node P1 sends back to Alice
a set of potential next nodes, with their IP addresses, TCP
ports and El-Gamal public keys. Alice chooses one of them
and, through an encrypted channel described below, extends
her tunnel to P2. The communications between P1 and P2,
are using the crowds protocol. This is repeated λ − 1 time
until Alice instructs Pλ−1 to connect to Bob.

All communications between Alice and node Pi (includ-
ing Bob, i.e., Pλ) are encrypted in a layered manner. Alice
always knows the public keys y1 . . . yi and uses them to
generate a key distribution message that distributes to all
intermediates P1 . . . Pi the keys necessary to re-encrypt mes-
sages. These are conceptually the composite public keys
under which the messages seen by each Pi are encrypted.
Alice sends the key distribution message:

A→ P1 : ((y1 . . . yi)
r , gr ; yr ′

0 , gr ′)≡(P forward
0 , Pbackward

0)

(15)

P1 removes his key from the first part of the message, to
retrieve the public key P forward

1 := ((y1 . . . yi)
r/(gr)x1, gr)

≡ (y1 f , g1 f) necessary to re-encrypt messages traveling for-
ward in the channel. Similarly he adds his public key to the
second part of the message to calculate the key Pbackward

1 :=
(yr ′

0 · (gr ′)x1, gr ′) ≡ (y1b, g1b) necessary to re-encrypt mes-
sages traveling back towards Alice. P1 then sends the new
key set (P forward

1 , Pbackward
1) to node P2. This procedure is

repeated by all P in the channel, until the final message
arrives at Pi :

Pi−1 → Pi : (yr
i , gr ; (y0 . . . yi−1)

r ′ , gr ′) (16)

This key distribution procedure ensures that all intermedi-
ate Pi know the public keys under which the messages they
receive on the forward and backward path are encrypted.
As a result they can decrypt them and re-encrypt them on
their way. Upon receiving a message M := (a, b) node Pj

performs the decryption using its secret key (g, y j , x j) and
re-encryption using the key (g j (b| f), y j (b| f)), under which
the message is encrypted, and passes the resulting M ′ to the
next node in the path (using Crowds as transport).

M ′ := ReEnc(g j (b| f),y j (b| f))(Dec(g,y j ,x j)(M)) (17)

Following this process a message sent from Alice to Bob
encrypted under key P forward

0 , arrives encrypted under Bob’s
key (g, yλ), and a message send back from Bob to Alice under
key Pbackwards

λ arrives encrypted under her key (g, y0).

5.1 Attacking rWonGoo: capturing the route

The key vulnerability of rWonGoo is that it is susceptible to
man-in-the-middle attacks, that allow the rest of the chan-
nel to get captured after a malicious node is encountered.
This means that after Alice chooses a bad node to include
on the channel path, all subsequent nodes can be made to be
bad too. The intuition behind this attack is that Alice knows
very little about the network, and relies on intermediaries to
discover other nodes and their public keys. She is therefore
unable to tell the difference between a genuine interaction
with the network, and a interaction that is simply simulated
by an adversary.

The attacks proceeds quite simply: we assume that there is
a first dishonest re-encrypting node on the path, named Pm .
Once the dishonest node Pm receives the request to extend
the channel, it starts simulating a network of nodes Pmk , and
provides Alice with their fictitious IP addresses, TCP ports
and public keys (for which Pm knows the secret component).
Alice chooses one of them to extend her tunnel, but no mat-
ter which one she chooses Pm never forwards any message
but keeps simulating more nodes, all running the rWonGoo
protocol with Alice. Finally Alice connects to Bob, directly
through Pm . Note that the fact that Alice is provided a choice

123

Breaking four mix-related schemes based on Universal Re-encryption 399

of nodes to chose from does not eliminate any attacks, since
they are all corrupt, or even non-existent. As Alice does not
have any first hand experience of any of the nodes she is asked
to choose (she cannot even query them to see if they exist,
since this would reveal she is the originator of the tunnel), the
attacker can populate these choices with not only malicious
but also fictitious nodes.

During the key distribution phase of the protocol the mali-
cious nodes substitute the keys communicated to Bob, for use
in the backward channel, with their own keys. Therefore the
key distribution message received by Bob is (yr

λ, gr ; yr ′
m , gr ′),

where ym is the public key of the adversary. As a result any
message sent by Bob back to Alice can be read by the mali-
cious nodes. Those messages can then be re-encrypted under
the key f b

m and sent to Alice.
Our attacks so far allows an adversary to perform a prede-

cessor attack [24], and probabilistically find Alice after she
engages in consecutive interactions with Bob. We can esti-
mate how long, in terms of the number of fresh channels Alice
has to open to Bob, the attack is likely to take. We assume
that a fraction f of the network is controlled by the adver-
sary [7]. The intersection attack succeeds immediately (for
reasons explained below) if the first Crowds node after Alice,
Q1 belongs to the adversary, which it is with probability f .
Consider the random variable L , which denoted the number
of fresh rWonGoo channels that Alice opens to Bob, until a
channel in which the first node Q1 is corrupt. The random
variable L follows a geometric distribution with parameter f ,
and Alice is on average expected to have E(L) = (1− f)/ f
secure anonymous tunnels until her association with Bob is
uncovered.

5.2 Decrypting any message using re-routing oracles

First we note that any node in the network, including Alice
and Bob, can be used as a decryption oracle for messages
encrypted under their keys. During the key setup operation
a node is asked to effectively decrypt the first part of the
message it receives and relays it to the next node on the path.
Consider the victim node Pi with public key yi which is to be
used to decrypt a ciphertext m := (a, b) ≡ (gk, yk

i m′). The
adversary sets up an rWonGoo channel Pm, Pi , P ′m , where
the nodes Pm and P ′m are controlled by the adversary. Then
Pm sends to Pi the following message, that is to Pi indis-
tinguishable from a key distribution message (k is a random
factor chosen by the adversary):

Pm → Pi : (b · k, a; yr ′
m , gr ′) (18)

The node Pi removes its key from the first component of the
message and sends the result to the next node P ′m , which is
also controlled by the adversary. The new message will be

Pi → P ′m : (b · k/axi , a; . . .) (19)

As a result P ′m gets b · k/axi = yk
i m′ · k/yk

i = m′ · k and can
divide it by the known factor k to retrieve the encrypted mes-
sage m′. We will denote the decryption of a ciphertext m by
the adversary as m′ = Deci (m), which only takes subscript
i (and not the private key xi) since it can be performed even
if just the name of the node is known.1

We have shown in the previous section that a malicious Pm

can always uncover the receiver Pλ (or Bob) of any message
seen, and see in clear all messages send by Bob to Alice. Since
any malicious node can also force any other node in the net-
work to act as a decryption oracle, it follows that the attacker
can also see in clear all messages sent by Alice to Bob. Each
ciphertext m destined to Bob, has to travel through Pm , and is
encrypted only under Bob’s public key. The attacker can just
use Bob as an oracle to retrieve the plaintext m′ = Decλ(m).

5.3 Using any Qm to attack the Crowds routing

In rWonGoo communication between any two P is done
using the Crowds protocol, and we name the nodes that
merely perform crowds redirection Qi . Those simply for-
ward the message and perform link encryption.

First, using the decryption attacks presented above, any
corrupt Qm node can capture the rest of the route until Alice
asks to be connected to Bob. This is possible because the
corrupt Qm sees all the key distribution and actual messages
that are relayed, starting from the first message in which
Alice asks to have the rWonGoo channel connected to the
next Pi on the route. At this point the corrupt rerouting node
Qm uses Pi as a decryption oracle to retrieve all information
sent by Alice. As a result Qm can simulate all interactions
where the secret keys of Pi are needed, without ever relaying
the channel through it. Our route capture attacks can now be
performed by any corrupt Pm or just Qm node on the path.

Secondly we note that a Qm can test whether its predeces-
sor is Alice by using it as a decryption oracle on a backwards
message (which is only encrypted under Alice’s key), and
checking if the result is plaintext. In case the result is plain-
text, Qm can confirm that its predecessor is Alice. This turns
the predecessor attack into an exact attack, and makes rWon-
Goo weaker than the original Crowds. Similarly the attacker
can test any other node in the network to see if it is the orig-
inator of the message. This breaks anonymity after at most
O(N) decryptions, where N is the size of the network, by a
Qm between Alice and P1.

1 Note that if the message decrypted using Pi as an oracle is not
encrypted under the corresponding key yi , it will result in a plaintext that
is indistinguishable from random. This property can be used to detect
valid decryptions, when the correct plaintext is expected to have some
structure. In case the correct plaintext is also indistinguishable from
random for the adversary, it is difficult to tell if the correct or incorrect
node was used as a decryption oracle.

123

400 G. Danezis

A confirmation attack can be mounted by any Qm , even
if it is not on the Crowds route of the first hop between P0,
or Alice, and the first mix P1. Any Qm observes in clear the
key ((y0 . . . yi)

r ′ , gr ′) ≡ ms , which is the combination of all
the public keys of the Pi ’s so far on the route. Qm wants to
test whether the path used is made of the guess set of nodes
Pj0 . . . Pjk . To do this Qm can consecutively decrypt, using
each of the nodes Pj0 . . . Pjk as oracles message ms , (i.e.,
m′s = Dec j0(. . . Dec jk (ms))). If it is the case that the plain-
text equals one (m′s = 1), then the guess is correct, and Qm

has established that the path so far was made of the nodes
in the guess set. This is an all-or-nothing test that provides
no partial information. As a result it does not scale well with
the number of honest network nodes N and the path length
l, since Qm will have to perform c = (N

l

) × l decryption
requests.

5.4 The stronger Crowds the weaker rWonGoo

The complexity of the attack presented above, in terms of
the parameters of the system, is counter intuitive. The attack
becomes more difficult as the number of honest Ps that
re-encrypt the messages increases before the message is
“seen” by either a dishonest Pm or a dishonest Qm (a node
that only performs Crowds between P nodes, yet can see
the ciphertext and perform the guessing attack). In case the
message is seen by a corrupt Qm as it is traveling between
Alice and P1, only O(N) decryptions are required.

We assume that until a corrupt Pm or Qm is reached, say
node number v (at which point we can capture the route
or perform the guessing attack) all nodes are selected uni-
formly at random. This allows us to calculate the expected
position v of the first corrupt node, if we know that a certain
fraction f of the network is corrupt. The number v follows
a geometric distribution with parameter f and its expected
value is E(v) = (1− f)/ f . As the fraction of corrupt nodes
increases we expect the message to be seen by the attacker
earlier.

At the same time the Crowds protocol can be tuned with a
parameter h, which is the probability a message is forwarded
to its final destination (versus being forwarded to a random
member of the crowd) by each node that receives it. It is also
trivial to see that the average length u of each journey into the
crowds subsystem (that is used to route between Ps) follows
a geometric distribution with parameter h, with average path
length E[u] = (1− h)/h.

As mentioned before our guessing attack is most effec-
tive when the number of Ps on the route is small, before the
message is seen by the adversary. We know that on average
the message will be seen in E(v) = (1− f)/ f hops, but the
average length of its first Crowds trip between Alice (P0) and
the first re-encryptor P1 is expected to be E[u] = (1− h)/h.
We can conclude that if the parameter h is smaller than f

(the corrupt fraction of nodes in the network) it is expected
on average that the attacker will see the message on its first
hop and be able to perform the most trivial guessing attack.
The adversary only has to perform at most N decryption
operations until Alice is revealed.

This result is counter-intuitive: the parameter h being
smaller means that the number of intermediaries in the
Crowds protocol is larger. One should expect this to increase
the anonymity of the system. Contrary to this, increasing the
length of the crowds path allows the adversary to observe
the raw message earlier with higher probability, despite link
encryption. Since the rWonGoo scheme is very vulnerable
when the attacker can observe messages early on, increasing
the “anonymity” provided by the Crowds transport, decreases
the overall anonymity of the system.

5.5 Partial fix for rWonGoo

As it stands rWonGoo is weaker than Crowds (that only uses
link encryption, and no other cryptographic protection.) It
is possible to make its security as good as Crowds with a
minor modification: the sender Alice, chooses a fresh key
pair (g, y0) for each channel. This would defeat the con-
firmation attacks that make rWonGoo weaker than crowds,
since Alice cannot be forced to decrypt a ciphertext correctly,
confirming that she is the sender. This makes rWonGoo as
strong as Crowds, but much more complex and unnecessarily
costly at the same time.

6 Conclusion

The properties of RSA that make the “Universal Re-encryp-
tion of signatures” scheme vulnerable to our attacks have
been known, and used in the past by Birgit Pfitzman to
break anonymous communications schemes [19]. To over-
come those attacks special padding schemes such as PKCS#1
[20] are used to give ciphertexts a special structure that is
infeasible to reconstruct by multiplying different ciphertexts
together. These padding schemes require a verifier to have
access to the message plaintext in order to verify its valid-
ity, making it therefore impossible to check the validity of
re-encrypted ciphertexts (since they still hide the message
m). To allow decrypted ciphertexts to be verified using a sig-
nature scheme none of the fancy cryptography is necessary:
it is sufficient to encrypt using Golle et al., a signed message,
and transmit the corresponding ciphertext. The receiver then
decrypts the ciphertext and can check the signature. There-
fore we see little hope in fixing this scheme while retaining
its interesting re-encryption properties.

The attack against the onions based on universal
re-encryption is possible because of many factors: we can
modify the onions, since their integrity is not protected, and

123

Breaking four mix-related schemes based on Universal Re-encryption 401

their different parts are not linked to each other in a robust
manner. The mixes allow themselves not only to be used as
decryption oracles for arbitrary ciphertexts, but also can be
used to redirect traffic to the attacker making tracing effort-
less. Our attack shows that the claim in Sect. 4.3 of [11], that
the insertion of blocks in the onion structure is not possible,
is unfounded which directly leads to our attack.

Finally we show that rWonGoo is a very fragile scheme.
The additional cryptography in rWonGoo has made the over-
all system more susceptible to attack, than the original
Crowds proposal, that only used link encryption. In particu-
lar it is possible for all messages between Alice and Bob to be
read by the adversary with high probability, following route
capture. Since any participant acts as a decryption oracle, it
is possible to mount confirmation attacks to find Alice more
quickly than if simple Crowds was used.

Our attacks lead to two important and novel intuitions, that
anonymous communication system designers should care-
fully take into account in the future. First, the weakness of
the rWonGoo scheme demonstrates that anonymous chan-
nels are not automatically composable: rWonGoo using the
crowds protocols as a transport between mixes makes the
system more vulnerable, not stronger. Furthermore choos-
ing more secure parameters for the Crowds transport used
in rWonGoo, makes the overall scheme less secure, which is
highly counter-intuitive.

Second, our attacks against the mix and signature schemes
based on Universal Re-encryption, demonstrate the inher-
ent difficulty in using this primitive in a secure fashion.
Its power comes from its neat structure, which allows for
re-encryption given only a ciphertext, and the use of multi-
ple keys along with incremental decoding. It is these prop-
erties that made it a promising primitive for anonymous
communications.

On the other hand to preserve these properties, and allow
ciphertext to be universally re-encryptable, a designer is
forced to let them be malleable, leak the public keys used,
and is unable to add any redundancy for integrity check-
ing of messages on their way. That is the weakness our
attacks exploited, and it is a weakness that should have been
foreseen given the rich literature on attacking re-encryption
networks. The literature on (non-Universally) re-encryption
networks demonstrates that, to be secured, such schemes
require, identification of senders, expensive zero-knowledge
proofs of knowledge of the plaintexts, and proofs of correct
shuffle and threshold decryption. Furthermore these proofs
are not merely a nice add-on to allow for universal verifi-
ability, but a core component of a secure re-encryption mix
system. Such proofs have not yet been adapted to Universal
Re-encryption, and would be difficult to adapt them to the
dynamic setting of free-route mix networks, and the multi-
ple threats that such networks face (dynamic membership,
sybil attacks,…). Unless there is a breakthrough in this field,

Universal Re-encryption should always be used, in this
context, with uttermost care.

Acknowledgments Ross Anderson, Philippe Golle, Ari Juels have
provided feedback that has improved this work. Discussions, over the
years, with Paul Syverson about how to build mix networks based on
Universal Re-encryption were invaluable to understand how to attack
them. George Danezis is supported by the Cambridge-MIT Institute
(CMI) project on “Third generation peer-to-peer networks”, the Flemish
Research Council (FWO), and by the European Union PRIME project.

References

1. Abe, M.: Universally verifiable MIX with verification work inde-
pendent of the number of MIX servers. In: Proceedings of EURO-
CRYPT 1998, LNCS 1403. Springer, (1998)

2. Chaum, D.: Untraceable electronic mail, return addresses, and dig-
ital pseudonyms. Commun. ACM 24(2), 84–88 (1981)

3. Chaum, D.: The dining cryptographers problem: unconditional
sender and recipient untraceability. J. Cryptol. 1, 65–75 (1988)

4. Danezis, G., Dingledine, R., Mathewson, N.: Mixminion: Design
of a Type III anonymous remailer protocol. In: IEEE symposium
on security and privacy. Berkeley, CA (2003)

5. Danezis, G., Laurie, B.: Minx: a simple and efficient anonymous
packet format. In: Atluri, V., Syverson, P.F., di Vimercati, S.D.C.
(eds.) WPES, pp. 59–65. ACM, New York (2004)

6. Dingledine, R., Shmatikov, V., Syverson, P.: Synchronous batch-
ing: from cascades to free routes. In: Proceedings of privacy
enhancing technologies workshop (PET 2004), LNCS, vol. 3424
(2004)

7. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, M.F.,
Rowstron, A.I.T. (eds.) IPTPS, Lecture notes in computer science,
vol. 2429, pp. 251–260. Springer, Heidelberg (2002)

8. El Gamal, T.: A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE Trans. Inf. Theory IT-
31(4), 469–472 (1985)

9. Fairbrother, P.: An improved construction for universal re-encryp-
tion. In: Martin, D., Serjantov, A. (eds.) Privacy enhancing technol-
ogies, Lecture Notes in Computer Science, vol. 3424, pp. 79–87.
Springer, Heidelberg (2004)

10. Golle, P., Jakobsson, M., Juels, A., Syverson, P.: Universal re-
encryption for mixnets. In: Proceedings of the 2004 RSA con-
ference, Cryptographer’s track. San Francisco, USA (2004)

11. Gomulkiewicz, M., Klonowski, M., Kutylowski, M.: Onions based
on universal re-encryption—anonymous communication immune
against repetitive attack. In: Lim, C.H., Yung, M. (eds.) Infor-
mation security applications, 5th international workshop, WISA
2004, Lecture Notes in Computer Science, vol. 3325, pp. 400–410.
Springer, Jeju Island, (2004)

12. Gülcü, C., Tsudik, G.: Mixing E-mail with Babel. In: Network and
distributed security symposium—NDSS ’96, pp. 2–16. IEEE, San
Diego, California (1996)

13. Klonowski, M., Kutylowski, M., Lauks, A., Zagorski, F.: Universal
re-encryption of signatures and controlling anonymous informa-
tion flow. In: WARTACRYPT ’04 conference on cryptology. Bed-
lewo, Poznan (2004)

14. Klonowski, M., Kutylowski, M., Zagrski, F.: Anonymous commu-
nication with on-line and off-line onion encoding. In: Vojts, P.,
Bielikov, M., Charron-Bost, B., Skora, O. (eds.) SOFSEM 2005:
theory and practice of computer science, 31st conference on current
trends in theory and practice of computer science, Lecture Notes
in Computer Science, pp. 229–238. 3381, Liptovsk Jn, Slovakia
(2005)

123

402 G. Danezis

15. Lu, T., Fang, B., Sun, Y., Guo, L.: Some remarks on universal re-
encryption and a novel practical anonymous tunnel. In: Lu, X.,
Zhao, W. (eds.) ICCNMC, Lecture Notes in Computer Science,
vol. 3619, pp. 853–862. Springer, Heidelberg (2005)

16. Moeller, U., Cottrell, L., Palfrader, P., Sassaman, L.: Mixmaster
protocol version 2. Tech. rep., Network Working Group (2004).
Internet-Draft

17. Neff, C.A.: A verifiable secret shuffle and its application to e-
voting. In: Samarati, P. (ed.) ACM conference on computer and
communications security (CCS 2002), pp. 116–125. ACM Press,
New York (2001)

18. Park, C., Itoh, K., Kurosawa, K.: Efficient anonymous channel
and all/nothing election scheme. In: Helleseth, T. (ed.) Advances
in cryptology (Eurocrypt ’93), LNCS, vol. 765, pp. 248–259.
Springer, Lofthus (1993)

19. Pfitzmann, B.: Breaking efficient anonymous channel. In: Santis,
A.D. (ed.) Advances in cryptology (Eurocrypt ’94), LNCS, vol.
950, pp. 332–340. Springer, Perugia (1994)

20. PKCS #1 v2.1: RSA cryptography standard. RSA Security
Inc. (2002)

21. Reiter, M.K., Rubin, A.D.: Anonymous web transactions with
crowds. Commun. ACM 42(2), 32–38 (1999)

22. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtain-
ing digital signatures and public-key cryptosystems. Commun.
ACM 21(2), 120–126 (1978)

23. Shoup, V.: Securing threshold cryptosystems against chosen
ciphertext attack. J. Cryptol. 15(2), 75–96 (2002)

24. Wright, M., Adler, M., Levine, B.N., Shields, C.: The predeces-
sor attack: an analysis of a threat to anonymous communications
systems. ACM Trans. Inf. Syst. Secur. 7(4), 489–522 (2004)

Authors Biography

G. Danezis is post-doctoral vis-
iting fellow at the Cosic group,
K.U. Leuven, in Flanders, Bel-
gium. He has been researching
anonymous communications, pri-
vacy enhancing technologies,
and traffic analysis since 2000, at
K.U. Leuven and the University
of Cambridge, where he com-
pleted his doctoral dissertation.
His theoretical contributions to
the PET field include the estab-
lished information theoretic

metric for anonymity and the study of statistical attacks against mix
systems. On the practical side he is one of the lead designers of Mix-
minion, the next generation remailer, and has worked on the traffic
analysis of deployed protocols such as SSL and Tor. He was the co-
chair of the Privacy Enhancing Technologies Workshop in 2005 and
2006, he serves on the PET workshop board and has participated in
multiple conference and workshop program committees in the privacy
and security field.

123

	Breaking four mix-related schemes based on UniversalRe-encryption
	Abstract
	Introduction
	Breaking the ``Universal Re-encryption of signatures''
	Attacking the scheme
	A brief overview of mixing
	Breaking onions based on Universal Re-encryption
	Attacking the scheme
	Replay and tagging attack
	Weaknesses of the rWonGoo scheme
	Attacking rWonGoo: capturing the route
	Decrypting any message using re-routing oracles
	Using any Qm to attack the Crowds routing
	The stronger Crowds the weaker rWonGoo
	Partial fix for rWonGoo
	Conclusion
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

