
Birgit Pfitzmann
and Michael Waidner
IBM Zurich Research Lab

Analysis of Liberty
Single-Sign-on with
Enabled Clients

Channel-based enabled-client protocols, such as the Liberty-

enabled client and proxy profile, offer Web single-sign-on

service; however, several security concerns remain.

Many users simplify Web sign-on
by choosing the same username
and password for all services.

This approach presents several problems,
however. Each service, as well as any suc-
cessful attacker against one service, can
impersonate the user to all the other ser-
vices. In addition, services that want to
verify that the user owns a certain preex-
isting name (first and last name, email
address, or credit card number, for exam-
ple) must still verify the name during reg-
istration. Finally, using the same infor-
mation for all services makes regular
password changes, which are a good
security practice, awkward.

Web single-sign-on protocols — such as
Microsoft Passport (http://msdn.microsoft.
com), Oasis’s Security Assertion Markup
Language (SAML),1,2 and the Internet2 pro-
ject Shibboleth3 — aim to solve these prob-
lems by letting individuals log in to many
Internet services while authenticating only

once, or at least always in the same way.
Enterprises hope that single-sign-on
protocols will significantly decrease
customer-care costs due to forgotten
passwords and increase e-commerce trans-
actions by enhancing the user experience.
Commercial interest centers on distributed
enterprises and on small federations of
enterprises with existing business rela-
tionships, such as supply chains.

In July 2002, the Liberty Alliance pub-
lished a six-part specification that
extends SAML message formats, classifies
authentication classes, and provides four
message-exchange protocols, starting
with an architecture overview.4 In this
article, we concentrate on the fourth pro-
tocol, the Liberty-enabled client and
proxy (LECP) profile.5 The LECP protocol
assumes a special protocol-aware client
(the enabled client), whereas the first
three Liberty protocols — like Passport,
SAML, and Shibboleth — assume an

38 NOVEMBER • DECEMBER 2003 Published by the IEEE Computer Society 1089-7801/03/$17.00©2003 IEEE IEEE INTERNET COMPUTING

Id
en

ti
ty

 M
an

ag
em

en
t

unmodified Web or wireless access protocol (WAP)
browser as the client.

Given an enabled client, the LECP protocol is
essentially a three-party authentication and
channel-establishment in the standard setting of
protocols such as Needham-Schroeder or Kerberos,
in which all three parties run specific protocol
engines. A large body of research exists for this
area, from the design of individual private- and
public-key protocols over robust design principles
to security proofs, both cryptographic and tool-
supported.6 Nevertheless, to the best of our knowl-
edge, the technique used in the LECP protocol,
which we call channel-based, is new. Although Lib-
erty published no rationale for avoiding a preex-
isting protocol, we believe this technique’s main
benefit is that it doesn’t require special cryptogra-
phy at the client.

In our analysis of the LECP protocol, we found a
vulnerability to man-in-the-middle attacks. In
response to our notification on 4 September 2003,
Liberty corrected the flaw in v1.1, using a counter-
measure we proposed. We use this experience to dis-
cuss generally the design of secure channel-based
protocols, including the countermeasure used in the
Liberty errata7 and subsequent Liberty versions.

LECP Protocol
To use a single-sign-on protocol, an individual reg-
isters with a so-called identity provider. The iden-
tity provider will later be the only party to directly
authenticate the user, either globally or within a
federation of enterprises. This confirms the user’s
identity to the other parties, or service providers.

Figure 1 gives an overview of the LECP proto-
col. It corresponds to the illustration in the Liber-
ty Bindings and Profiles Specification,5 except that
we abbreviated some elements and added some
detail for reference. The process includes the fol-
lowing steps (gaps in the step numbers are for
compatibility with other Liberty protocols, some
of which have more steps overall):

1. A client interacting with a service provider via
HTTP (that is, browsing in a normal way) indi-
cates in its header that it is Liberty-enabled. All
further messages have this fixed LE header.

3. If the service provider wants to authenticate
the client, and if it understands the LE header,
it sends an authentication request <AuthnReq>
to the client in an envelope <AuthnReqEnv>.
The envelope also includes the service
provider’s identity <SP-ID> and the address
<SP-URL> at which the service provider wants

to receive the response.
4. The client takes the request from the envelope

and forwards it in a SOAP8 message to its
identity provider.

5. The identity provider ascertains the user’s
identity (this can involve user interaction) and
prepares a response <AuthnRes> for the service
provider, which it sends to the client in a
response envelope <AuthnResEnv>.

7. The client takes the response from the envelope
and posts it to the service provider’s address
<SP-URL>.

10. The service provider processes the response.
11. Based on the response, the service provider

continues the interaction.

We can generalize the LECP protocol in several
ways. For instance, the protocol can be based
entirely on Web services if the client and service
provider interact via SOAP. Or it can be based
entirely on classical Internet standards if the client
and identity provider interact via HTTP. Authen-
tication request and response formats and
envelopes can differ slightly from the Liberty for-
mats9 — they might use SAML,1 for example.

What then distinguishes the LECP protocol from
other authentication and key-exchange protocols?

Channel-Based Approach
Classical three-party authentication protocols like
Kerberos and Needham-Schroeder start with key
exchange or key confirmation.6 The client appli-
cation then uses the new or confirmed key for
encryption and authentication. The identity

IEEE INTERNET COMPUTING http://computer.org/internet/ NOVEMBER • DECEMBER 2003 39

Liberty Single-Sign-on

Identity
provider

User

Liberty-enabled
client

Service
provider

5. Process

10. Process
11. HTTP response

3. 200 OK <AuthnReqEnv>=(<AuthnReq>,
 <SP-ID>,<SP-URL>)

4. SOAP POST:<AuthnReq>

6. OK SOAP: <AuthnResEnv>=<AuthnRes>

7. POST <SP-URL>;<AuthnRes>

Possible user interaction

1. HTTP request, Liberty-enabled header

Figure 1. Liberty-enabled client and proxy (LECP) protocol. A user
registers with the identity provider, which directly authenticates the
user and confirms the user’s identity to service providers.

provider is thus a key-distribution center or an
online certification authority. No such three-party
key exchange exists in the LECP protocol. Instead,
the authentication response <AuthnRes>, which
serves as an authentication token, travels over an
independently established secure channel in step
7. In other words, the enabled client establishes a
secure channel to the service provider without an
authenticated client key, just as browser clients
typically use secure sockets layer (SSL) or trans-
port-layer security (TLS), and then send an authen-
tication token through the channel without con-
veying a key.

The main advantage of channel-based proto-
cols is that they work with SSL/TLS, the only
current ubiquitous cryptographic infrastructure.
In particular,

• Most service providers already have SSL serv-
er certificates.

• Because browsers already contain channel-
based SSL/TLS implementations, enabled
clients can easily be built as slight enhance-
ments of browsers.

• Many servers have specific front ends, some-
times even hardware accelerators, for efficient-
ly dealing with SSL connections.

In addition, an individual can use several unrelat-
ed authentication tokens, even from different iden-
tity providers, to provide information over a secure
channel with the service provider.

A disadvantage of the SSL-channel-based pro-
tocol is that in closed scenarios such as intraenter-
prise single-sign-on, symmetric-key-only solutions
can be computationally faster — recall that SSL has
an asymmetric key-establishment phase. In a wider
environment, however, the client’s Internet round-
trip to the identity provider is typically far more
time-consuming than the SSL computations.

The channel-based protocols share this disad-
vantage with all three-party authentication pro-
tocols. Establishing a client certificate into the
client (permanently for single-user clients, and per
session from the identity provider for multiuser
clients) so that the client can then identify direct-
ly to service providers is then more efficient. The
client must be trusted in any case because it learns
the user’s single-sign-on password. Moreover,
browsers already have key-loading capabilities.
An enabled client can simplify the key-loading
process further and provide an interface for man-
aging multiple keys for different user roles or
pseudonyms.

Enabled Clients
As mentioned earlier, other Liberty protocols and
Web single-sign-on protocols often work with
browsers as clients, whereas the LECP protocol
requires specifically enabled clients. Enabled
clients offer several benefits:

• They avoid an additional Internet round-trip
between steps 1 and 3 when the service
provider doesn’t know the user’s identity
provider. The enabled client will either know
the identity provider or will ask the user local-
ly. With a browser, the service provider must
ask the user in an extra message.

• They can transfer arbitrarily long authentica-
tion requests and responses directly. With a
browser, steps 3, 4, 6, and 7 occur through a
redirect action. The client transfers information
primarily in the URL’s search string, which
should not be longer than 255 bytes. Because
signed messages, especially those with certifi-
cates, are longer than 255 bytes, back-channels
are typically needed. (POSTs need user interac-
tion or scripting. User interaction is cumber-
some, and scripting is already a form of
enabled client and reduces security. Cookies are
only possible if the identity and service
providers are in the same domain.)

• They can alleviate some security problems. In
particular, an enabled client can store authen-
tication tokens securely and out of reach of
potential scripts, and it can improve the user
interface — for example, by notifying the user
of the probability that he or she is connected to
the right identity provider before the user
inputs a password.

The disadvantage of enabled clients is clear: They
must be installed on users’ machines, and users are
often reluctant to install anything, particularly
software to make Web browsing simpler or more
secure. This is demonstrated by the moderate suc-
cess of providers of end-user security software and
browser certificates. This was the original motiva-
tion behind browser-based (zero-footprint) Web
single-sign-on. Nevertheless, new functionality
makes its way to large user groups:

• Browser evolution. All browsers with a signifi-
cant user base offer more than standard HTTP
and HTML. Security and identity-management
additions, such as SSL support, personality set-
tings, and password management, are common.
Adding related protocols is thus conceivable.

40 NOVEMBER • DECEMBER 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Identity Management

• Web services. Browsers might soon be Web
service-enabled, engendering additional secu-
rity features, such as SOAP Message Security.10

Some other client applications might be Web
service-enabled even earlier and run single-sign-
on protocols other than browsers.

Man-in-the-Middle Attacks
Receiving a security token from an identity provider
and sending the token to a service provider over a
secure channel seems a natural and safe way to
authenticate. Unfortunately, in this simple form the
protocol is vulnerable to a man-in-the-middle
attack. This was the vulnerability of Liberty v1.0.

In a man-in-the-middle attack, a dishonest
service provider (DSP) impersonates a user to
another service provider. An attacker can often
guess or learn from other sources the providers
at which a user is known, making the user worth
impersonating. For instance, a dishonest Web
shop might impersonate a user to the user’s
bank or the user’s employer’s intranet to access
accounts or records.

DSPs were a small concern with Liberty v1.0 and
v1.1, which focused on small, closed federations,
but they become important in future versions aim-
ing at a worldwide setting. Further, Liberty’s
prompt repair of its vulnerability to man-in-the-

middle attacks proves its concern for the issue.
The DSP need not even be a federation member,

as long as the user doesn’t notice. This can easily
happen even in small federations, either because the
user doesn’t think about it, doesn’t know the feder-
ation members, or isn’t involved in the protocol (and
thus cannot stop it) because the client application or
the identity provider cache the user authentication.

Figure 2 gives an overview of such an attack. Ini-
tially the user is browsing at the DSP, which starts a
concurrent session with an honest service provider
(such as a bank) where it wants to impersonate this
user. At step 3, the attacker combines the bank’s
request and ID with its own URL <DSP-URL>.
Because the envelope has no outer signature ele-
ment to prevent this,9 the identity provider process-
es the request in steps 4 to 6 as if it came directly
from the honest service provider. In step 7, the
client sends the response to the attacker at <DSP-
URL>, and the attacker forwards it to the honest ser-
vice provider, thus impersonating the user.

To verify that this attack works, we studied the
messages and processing requirements. This is not
a trivial task because the specification has four
layers that are quite intertwined in places. Top
down, the layers are:

• the specific LECP protocol,5

• the protocol’s common requirements, common

IEEE INTERNET COMPUTING http://computer.org/internet/ NOVEMBER • DECEMBER 2003 41

Liberty Single-Sign-on

Identity
provider

User

Liberty-enabled
client

Dishonest
service provider

Honest
service provider

11. HTTP response

3. 200 OK <AuthnReq>,<SP-ID>,<DSP-URL>

4. SOAP POST:<AuthnReq>

6. OK SOAP: <AuthnRes>

7. POST <DSP-URL>;<AuthnRes>

Possible user interaction

1. HTTP request
1. HTTP request

3. 200 OK <AuthnReq>,
<SP-ID>,<SP-URL>

11. HTTP response

7. POST <SP-URL>;
<AuthnRes>

Figure 2.Overview of our man-in-the-middle attack. A dishonest service provider impersonates a user to an
honest service provider by combining the honest service provider’s request and ID with its own URL. It thus
receives an authentication token that is in the user’s name and suitable for the honest service provider.

interactions, and processing rules,5

• Liberty messages, which extend several SAML
types, together with the general message pro-
cessing rules,9 and

• SAML requests and responses,1 with SAML
assertions as a lower sublayer.

We walked through the attack in a concrete LECP
protocol derived by top-down substitution of the
four layers. The analysis ran six pages. We need
not bore you with the details as Liberty acknowl-
edged and repaired the vulnerability. Instead, we
present the constructive parts of the analysis in a
generalized form as security measures. The “Man
in the Middle in Related Protocols” sidebar dis-
cusses other protocols’ approaches to these attacks.

Securing the Protocols
An immediate countermeasure against man-in-
the-middle attacks aims to ensure that when the
client sends the token meant for the honest service
provider to an address <(D)SP-URL> in step 7, it
is indeed a safe address — that is, only the honest
service provider receives the token.

Existing Security Measures
Our countermeasures rely on security measures
that already exist in the LECP protocol, but are not
all explicit. These include:

• Service-provider-specific tokens. The identity
provider puts the identity <SP-ID> into the
token <AuthnRes>. Thus the token is valid for
one service provider only. In Liberty, this is a
field <AudienceRestrictionCondition>. An
honest service provider accepts only authenti-
cation responses with its own identity. (Liber-
ty does not specify this field’s content, or the
acceptance restriction, but this is the natural
instantiation.) The identity provider obtains the
identity <SP-ID> in the authentication request
<AuthnReq> as a field <ProviderID>; we call
this the inner <SP-ID> in <AuthnReq>. The
outer occurrence of <SP-ID> in the envelope
<AuthnReqEnv>, shown in Figure 1, has no
security function.

• Secure channels. The token travels only over
secure channels. In the LECP protocol we
achieve this by requiring the service provider’s
address <SP-URL> to be secure — that is, an
HTTPS address, and by using a secure channel
between client and identity provider.

• Token authentication. The identity provider
authenticates the token <AuthnRes> for the

service provider — at least the user identity and
<SP-ID> — and the service provider verifies
this. (In Liberty, the authenticated part is the
contained assertion.)

Given these security measures, we state our goal of
using a safe address more precisely: If the identity
<SP-ID> in the token belongs to the honest service
provider, the address <SP-URL> in step 7 is an
HTTPS address controlled by a trusted process of
the service provider — the only entity that can get
a server certificate acceptable for this address.

Countermeasures
We’ve identified four countermeasures against
our attack — that is, four ways for the client to
send the token to the service provider’s safe
address only.

• Client derives service provider’s address. If the
client has an available list or infrastructure of
safe service provider addresses, it can derive
<SP-URL> from the service provider’s identity
<SP-ID>. This must be the inner <SP-ID> from
<AuthnReq> because it is the one used by the
identity provider. The service provider can also
propose a specific <SP-URL> in the request
envelope as a hint.

• Service provider authenticates for client. The
honest service provider authenticates the request
envelope containing a safe <SP-URL>, and the
client verifies its authenticity with respect to the
inner identity <SP-ID> in the request.

• Identity provider derives service provider’s
address. Instead of the client, the identity
provider can use a list or infrastructure of safe
service provider addresses to derive <SP-URL>
from the inner <SP-ID>. The identity provider
then includes <SP-URL> in the response enve-
lope <AuthnResEnv>, from which the client
takes it. Again, the service provider can pro-
pose a specific <SP-URL> as a hint.

• Service provider authenticates for identity
provider. The honest service provider includes a
safe <SP-URL> in the request <AuthnReq>,
which it authenticates for the identity provider.
This authentication is mandatory in the LECP
protocol. Again, the identity provider includes
<SP-URL> in the response envelope <AuthnRe-
sEnv> for the client.

The Liberty erratum and thus Liberty v1.1 employs
the third countermeasure, but without using the ser-
vice provider’s <SP-URL> as a hint. Indeed, this

42 NOVEMBER • DECEMBER 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Identity Management

seems optimal for the Liberty v1.0/1.1 focus on
small federations in which all identity and service
providers exchange information during setup. For
greater scalability, it seems better to use only a stan-
dard server-key infrastructure and to send all other
information in the protocol (as in the second and
fourth countermeasures). The metadata exchange
in Liberty v1.2 goes in this direction. When a chan-
nel-based protocol is chosen because it only needs
client cryptography in the form of secure channels,
the fourth countermeasure works best.

Security Considerations
A single-sign-on protocol is secure if it provides a
secure channel between an honest service provider
and an honest user with a certain name (that is, if
the service provider thinks it is interacting with a
user named N, it really is interacting with N). Clear-
ly, for this purpose, we must trust the client applica-
tion and every identity provider the service provider
trusts to certify this type of name and the quality of
its registration and authentication procedures.

We now show that the generalized LECP proto-
col with any of our four countermeasures is secure
if all submodules are appropriately instantiated (in
particular, the secure channels and user and mes-
sage authentication), and under a few additional

“reasonable” processing constraints.
A service provider believes it is talking with a

certain user when it receives a step 7 token that
has both its identity <SP-ID> and the user’s name,
and is authenticated by an identity provider the
service provider trusts for this name. The identity
provider issues such a token (step 6) only when it
has a secure channel with the user it originally
registered under this identity. It sends the token
only in that secure channel — that is, to the trust-
ed client acting for the user. Here we assume that
no other current or future Liberty profiles using
the same token types will leak tokens to parties
other than the user and service provider involved
in the transaction, because we can’t prevent the
same token from also occurring in a different pro-
file. (We consider this dependence between pro-
files a violation of robust protocol design.11) In step
7, the client forwards the token to an address <SP-
URL> determined with one of our countermeasures.
It’s easy to see that each countermeasure ensures
that this is a safe address of the service provider.
This prevents impersonation with the token
because no party except the user and service
provider obtains the token.

It would be an interesting challenge to fully for-
malize Web single-sign-on protocols while stay-

IEEE INTERNET COMPUTING http://computer.org/internet/ NOVEMBER • DECEMBER 2003 43

Liberty Single-Sign-on

Man-in-the-Middle in Related Protocols

Man-in-the-middle security is a concern
for all Web single-sign-on protocols.

Microsoft Passport v2.0 provides secu-
rity against man-in-the-middle attacks with
its “secure sign-in” (http://msdn.microsoft.
com); previous versions offer no protec-
tion against such attacks.The security is
not yet optimal, however.The protocols
are not public, but the documentation
shows that the main security measures
involve generating tokens that are specific
to one service provider by encryption for
the identity <SP-ID> (symmetrically and
with out-of-band key exchange) and send-
ing them to the service provider over
HTTPS addresses only.

Passport uses a process similar to our
fourth countermeasure (see the main text)
with a hint from the service provider to
ensure that <SP-URL> belongs to <SP-
ID>.The identity provider verifies that the
<SP-URL> provided by the service
provider is under the root of the organiza-

tion with identity <SP-ID>. Subscribing ser-
vice providers register this root as “the top-
most domain name of your site” (see “Reg-
istering Your .NET Passport Site” in the .Net
documentation at http://msdn.
microsoft.com). However, this would mean
that every attacker that controls any URL at
a site can obtain a token for the site. Regis-
tering a subroot of a secured service part
would solve this problem.

Man-in-the-middle attacks on one
SAML protocol have only recently been
discovered by including lower layers in the
analysis.1They are possible in specific stan-
dard-conformant implementations that
require underlying authentication that is
weaker than secure channels. Another
attack is based on the fact that browsers
often include a previous URL in a message,
the so-called referer header. A similar
analysis of the Liberty protocols including
lower layers is outstanding.We assume the
attack with the referer header will also

work on a Liberty protocol.
The browser-based Liberty profiles have

one explicitly stated user-interface vulner-
ability in allowing embedded forms for
authentication, which is an invitation for
fake-screen attacks.2 We would prefer that
to be deprecated.The proposed federation
contracts do not help, because dishonest
service providers would not adhere to
them,and they need not even be federation
members because users will not always
verify to what federations their current
service provider belongs.

References
1. T.Groß,“Security Analysis of the SAML Single Sign-

on Browser/Artifact Profile,” to be published in

Proc. Ann. Computer Security Applications Conf.

(ACSAC), 2003.

2. Liberty Alliance Project, “Liberty Architecture

Overview,” v1.1, 15 Jan. 2003, www.projectliber-

ty.org/specs/archive/v1_1/liberty-architecture-

overview-v1.1.pdf.

ing as close to the actual standards as possible, and
to then formalize this sketch into a full proof.

Conclusions
Serious concerns about Web single-sign-on beyond
protocol security and efficiency exist and have even
led to political and judicial debates.12 Kormann and
Rubin13 provide general security discussions, par-
ticularly regarding operational and user-interface
security. Although some of these issues are specific
to Microsoft Passport, many apply to all browser-
based protocols. Several concerns disappear with an
enabled client, as in the LECP protocol, if the oper-
ational and user-interface aspects are well designed.
(This is not part of current proposals, however.) An
earlier article deals with privacy requirements and
their consequences on better protocol design.14

Another concern is that a large identity provider
might gain a tollbooth position and be a single
point of failure. This was an explicit motivation for
the Liberty Alliance, which focuses on many small
federations with one or more identity providers.

A general conclusion for the design of security
protocols based on XML and Web services is that
the easy extensibility in almost all places, and the
resulting fragmentation of a specification, can
make analysis very difficult. Implementers face the
same difficulty of fitting together the layers, trying
not to forget any general rule from any layer, and
implementing the “reasonable” additional assump-
tions. We believe that a clearer modularization —
that is, modules with a clear specification of the
security they provide and few extension points —
would be helpful for the security of both future
protocols and their implementations.

Acknowledgments
We thank our colleagues Heather Hinton, Thomas Kretschmer,

and Anthony Nadalin for helpful discussions, and Michael

Barrett of American Express and Gary Ellison of Sun for their

friendly reaction and prompt response to the vulnerability

report. This article represents the authors’ views, which are

not necessarily shared by IBM. IBM is not a member of the

Liberty Alliance. Before publication of the errata, Jonathan

Sergent of Sun independently found the vulnerability in Lib-

erty v1.0.

References

1. P. Hallam-Baker and E. Malers, eds., “Assertions and Pro-

tocol for the Oasis Security Assertion Markup Language

(SAML),” Oasis standard, Nov. 2002; www.oasis-open.

org/committees/security/docs/cs-sstc-core-01.pdf.

2. P. Mishra, ed., “Bindings and Profiles for the Oasis Securi-

ty Assertion Markup Language (SAML),” Oasis standard,

Nov. 2002, www.oasis-open.org/committees/security/docs/

cs-sstc-bindings-01.pdf.

3. M. Erdös and S. Cantor, “Shibboleth Architecture Draft

v05,” May 2002; http://shibboleth.internet2.edu/docs/

draft-internet2-shibboleth-arch-v05.pdf.

4. Liberty Alliance Project, “Liberty Architecture Overview,”

v1.0, 11 July 2002; www.projectliberty.org.

5. Liberty Alliance Project, “Liberty Bindings and Profiles

Specification,” v1.0, 11 July 2002; www.projectliberty.org.

6. A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Hand-

book of Applied Cryptography, CRC Press, 1997.

7. Liberty Alliance Project, “Liberty Version 1.0 Errata,” ed.

00, 11 Oct. 2002, www.projectliberty.org/specs/archive/

v1_0/draft-liberty-version-1-errata-00.pdf.

8. D. Box et al., “Simple Object Access Protocol (SOAP) 1.1,”

W3C note, May 2000; www.w3.org/TR/SOAP.

9. Liberty Alliance Project, “Liberty Protocols and Schemas

Specification,” v1.0, 11 July 2002; www.projectliberty.org.

10. A. Nadalin et al., eds., “Web Services Security: SOAP Mes-

sage Security,” Oasis working draft, Aug. 2003; www.oasis

-open.org/committees/download.php/3281/WSS-SOAP

MessageSecurity-17-082703-merged.pdf.

11. M. Abadi and R. Needham, “Prudent Engineering Practice

for Cryptographic Protocols,” IEEE Trans. Software Eng.,

vol. 22, no. 1, 1996, pp. 6–15.

12. Federal Trade Commission, “Microsoft Settles FTC Charges

Alleging False Security and Privacy Promises,” 8 Aug.

2002, www.ftc.gov/opa/2002/08/microsoft.htm.

13. D.P. Kormann and A.D. Rubin, “Risks of the Passport Sin-

gle Signon Protocol,” Computer Networks, Elsevier Science

Press, vol. 33, 2000, pp. 51–58.

14. B. Pfitzmann and M. Waidner, “Privacy in Browser-Based

Attribute Exchange,” Proc. ACM Workshop on Privacy in

the Electronic Soc. (WPES), ACM Press, 2003, pp. 52–62.

Birgit Pfitzmann is a researcher at the IBM Zurich Research Lab.

Her research interests include federated identity manage-

ment, Web services security, enterprise privacy manage-

ment, and linking formal verification methods and cryp-

tography. She received a PhD in computer science from

Hildesheim University. She has authored more than 80

publications in the areas of security and privacy and has

served on numerous program committees. She is a senior

member of the IEEE and a member of ACM. Contact her at

bpf@zurich.ibm.com.

Michael Waidner is manager of the Network Security and Cryp-

tography research group at the IBM Zurich Research Lab.

His research interests include information security, privacy,

and cryptography. He received a PhD in computer science

from the University of Karlsruhe. He is responsible for

IBM’s research agenda in privacy technology, and led the

research team that developed IBM’s Enterprise Privacy

Architecture. Contact him at wmi@zurich.ibm.com.

44 NOVEMBER • DECEMBER 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Identity Management

