
Can an Operation Both Update the State and

Return a Meaningful Value in the

Asynchronous PRAM Model?

Jaap-Henk Hoepman

Department of Computer Science, University of Twente, the Netherlands

hoepman@cs.utwente.nl

Abstract

On an atomic Read-Modify-Write (RMW) object one can read the complete old
contents s of the object and simultaneously update its contents as a function δ(s)
of the old contents in a single, indivisible, atomic operation.

It is known that these RMW objects do not have a wait-free implementation
in the asynchronous PRAM model—in which processors can only communicate
with each other through atomic read-write registers. For the general case, in which
operations P over an object can return a function φP (s) of the old contents s while
simultaneously updating the object’s state to δP (s), few results are known.

We give several characterisations, in terms of φP (·) and δP (·), of such objects
for which no wait-free implementation in the asynchronous PRAM model exists.
The resulting objects are remarkably similar to RMW objects. Indeed, we also
exhibit two objects satisfying weaker conditions which do have a such a wait-free
implementation. Our results suggest that only objects as strong as RMW objects
do not have wait-free implementation in the asynchronous PRAM model.

Key words: distributed computing, fault tolerance, parallel processing,
asynchronous PRAM model, shared memory, read-modify-write objects.

1 Introduction

A Read-Modify-Write (RMW)[KRS86] object is a strong synchronisation prim-
itive that allows one to atomically read and update the contents of a shared
memory object. Indeed, their synchronisation properties are so strong that it
can be shown that these objects do not have a wait-free implementation in
the asynchronous PRAM model [CZ89,Her91].
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On the other hand, shared memory objects whose operations either return
the current state of the object or update the state of the object, but not both
in a single operation, do admit wait-free implementation in the asynchronous
PRAM model. A prime example is the atomic snapshot object [AAD+93].

In this paper we investigate this property for weaker RMW objects, that lie
between these two extremes. For such objects, an operation P can change (part
of) the state — modelled by the state transition mapping δP (·) — and return
a function of the old contents (possibly masking information) — modelled
by the output mapping φP (·). Herlihy has shown [Her91], that if δP (·) is any
function unequal to the identity function, while φP (s) = s (i.e., equivalent to
a full read), the object does not have a wait-free implementation.

In this paper we extend Herlihy’s results by considering also objects with non-
trivial output-mappings. We give several characterisations of objects that do
not admit a wait-free implementation. Matching our impossibility results we
exhibit two objects with slightly weaker (non-trivial) RMW properties that
do have a wait-free implementation in the asynchronous PRAM model. Our
results suggest that only objects almost as strong as true RMW objects do
not have a wait-free implementation in the asynchronous PRAM model.

The paper is structured as follows. First, in Section 2 we give a general defin-
ition of a shared memory object whose operations can both update the state
and return a (meaningful) value, and present the necessary concepts used
throughout the paper. Then Section 3 shows two objects that have a wait-free
implementation and also satisfy quite strong RMW-like properties. Finally, in
section 4 and 5 we derive several characterisations of objects in terms of φP (·)
and δP (·) that do not have a wait-free implementation in the asynchronous
PRAM model.

2 Definitions

We briefly introduce the necessary concepts and notation in this section. For
a more detailed description we refer to [Her91].

All objects X we consider will have deterministic sequential specifications S.
This specifies the set of possible states S of the object, the initial state of
the object, and for each operation its effect on the state and its (optional)
response when executed atomically. We write (s, r = O, s′) ∈ S if invoking O

in state s changes the state of the object to s′ and returns r as its response 1 .

1 In general, operations may have parameters; here it is assumed that for each
operation and each of its possible parameters, we have a separate entry in O.
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If an operation O does not return a value then we use r = ⊥.

Alternatively, the behaviour of an operation O ∈ O can, in all generality, be
expressed by two functions δO(·) — the transformation mapping — and φO(·)
— the output mapping — such that for all states s, s′ ∈ S, (s, r = O, s′) ∈ S
if and only if s′ = δO(s) and r = φO(s).

Histories are finite sequences of operations. For histories H and H′, H · O

denotes the history obtained by appending operation O after H, H ·H ′ denotes
the concatenation of histories H and H ′, and 〈H〉 denotes the state which
results after applying the operations in H—in order—on the initial state.
Thus, 〈H · O〉 = δO(〈H〉). We will usually omit the triangular brackets, and
write δO(H). Let us use the notation `(H) for the length of H, and H[i] for
the i-th operation in H, for 1 ≤ i ≤ `(H). Also let H{i : j} be H with
the i-th and j-th operation interchanged, while H[i ·· j] is the sub-history of
H starting with H[i] and ending with H[j]. Next we define commuting or
overwriting operations.

Definition 1 Let P and Q be operations of object X . P commutes with Q

after history H, P ∼H Q, if

〈H · P · Q〉 = 〈H · Q · P 〉 ∧ φP (H) = φP (H · Q) ∧ φQ(H · P ) = φQ(H) .

Q overwrites P after history H, P �H Q, if

〈H · P · Q〉 = 〈H · Q〉 ∧ φQ(H · P ) = φQ(H) .

P commutes with Q, P ∼ Q, if for all histories H, P ∼H Q. Similarly, Q

overwrites P , P � Q, if for all histories H, P �H Q.

We take the following two definitions from Anderson and Moir [AM93] and
Aspnes and Herlihy [AH90].

Definition 2 An object X is statically resilient iff for any two operations P

and Q in O at least one of the following hold: P ∼ Q, P � Q or Q � P .

Definition 3 An object X is dynamically resilient iff for every history H and
any two operations P and Q in O at least one of the following hold: P ∼H Q,
P �H Q or Q �H P .

The second definition allows operations to have a different ‘ordering’ depend-
ing on the history. Clearly, a statically resilient object is also dynamically
resilient.

Aspnes and Herlihy [AH90] showed that any dynamically resilient object has
an (unbounded) wait-free implementation in the asynchronous PRAM model.
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Theorem 4 ([AH90]) An object has a wait-free implementation using only
atomic read/write registers if it is dynamically resilient.

Matching this, Anderson and Moir [AM93] showed that this condition is ne-
cessary for a special class of objects called snapshot objects. Next to operations
that update the state, these objects also implement a Read function that re-
turns the full state of the object. For such a snapshot object to have a wait-free
implementation, it must satisfy Definition 3.

We extend their results to a wider class of objects, that do not necessarily
implement a full read operation.

3 Weak RMW objects with wait-free implementation

Consider the following two requirements on two operations A, B ∈ O for a
certain object X .

(∃H, H ′ :: φA(H) 6= φA(H ′)) ,

(∃H, H ′ :: φB(H · H ′) 6= φB(H · A · H ′)) . (1)

This is in a sense the weakest possible specification of an operation A such that
it both updates the state and returns a meaningful value. Indeed, the first part
of equation (1) demands that the value returned by A is not a constant, while
the second part states that the update of the state by A should be observable
through the value returned by some other operation B, perhaps after a certain
delay modelled by H ′.

Objects satisfying this ‘weakest’ requirement do sometimes admit a wait-free
implementation. One such object is presented in Figure 1. The sequential
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Figure 1. Statically resilient object with weak RMW properties.
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specification of the object is represented as a graph where the nodes are all
possible states of the object. Edges represent state changes due to the execu-
tion of an action. They are labelled by these actions and the value returned
by the action. Note that every action is enabled in every state; blocking an
action until a precondition holds is not possible for a wait-free object.

Theorem 5 Object X of Figure 1 satisfies equation (1) and has a wait-free
implementation using only atomic read/write registers.

PROOF. It can be easily checked that this object satisfies equation (1), by
observing that φA(s1) 6= φA(s3), and φB(P ) 6= φB(P ·A). Also, X is statically
resilient: B � A, B � P , A � P , A � A, B ∼ B, and P ∼ P . The result
follows by applying Theorem 4. �

A slightly stronger set of requirements is the following.

(∃H1, H
′

1 :: φA(H1 · H
′

1) 6= φA(H1 · B · H ′

1)) ,

(∃H2, H
′

2 :: φB(H2 · H
′

2) 6= φB(H2 · A · H ′

2)) . (2)

Here, object X is required to have two operations A and B that both update
the state and return a meaningful value, with the additional constraint that
A observes (after a delay H ′

1) the state change effected by B and vice versa.PSfrag replacements
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Figure 2. Dynamically resilient object with stronger Scan-and-Update properties.

In the next sections we will show that no statically resilient objects satisfying
equation (2) exist. Moreover, objects satisfying equation (2) with the further
restriction that H1 = H2 and both H ′

1 and H ′

2 empty do not admit a wait-free
implementation In fact, such objects are not dynamically resilient.

However, without further restrictions such a dynamically resilient object ad-
mitting a wait-free implementation can be constructed. Indeed, the dynam-
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ically resilient object presented in Figure 2 satisfies the even stronger set of
requirements

φA(P ) 6= φA(P · B) ,

φB(Q) 6= φB(Q · A) . (3)

Theorem 6 Object X of Figure 2 satisfies equation (3) (and equation (2))
and has a wait-free implementation using only atomic read/write registers.

PROOF. Equation (3) is easily checked. Clearly equation (2) immediately
follows from (3). For each of the states we will establish the ‘resilience’ order
between any pair of operations to show that X is dynamically resilient.

s1: A ∼s1
A, B ∼s1

B, P ∼s1
P , Q ∼s1

Q, A ∼s1
B, A �s1

P , A �s1
Q,

B �s1
P , B �s1

Q, and P ∼s1
Q.

s2: A ∼s2
A, B ∼s2

B, P ∼s2
P , Q ∼s2

Q, A �s2
B, A ∼s2

P , A �s2
Q,

P �s2
B, B �s2

Q, and P �s2
Q.

s3: A ∼s3
A, B ∼s3

B, P ∼s3
P , Q ∼s3

Q, A ∼s3
B, A ∼s3

P , A �s3
Q,

B ∼s3
P , B �s3

Q, and P ∼s3
Q.

s4 and s5: Symmetric to s2 and s3 respectively, with A and B and P and Q

interchanged.

Using Theorem 4 this completes the proof. �

4 Impossibility results for dynamically resilient objects

For dynamically resilient objects we have the following straightforward the-
orem and corollary, that nevertheless give a strong categorisation of those
objects that do not have a wait-free implementation. Moreover, in view of
Theorem 6, these impossibility results are tight.

The proof of this theorem is similar to Anderson and Moir’s proof of the
necessity of the dynamic resilience condition [AM93].

Theorem 7 Consider an object X . If for some operations A and B in O,
there exists a history H such that

φA(H) 6= φA(H · B) and φB(H) 6= φB(H · A) ,

then object X is not dynamically resilient and does not have a wait-free im-
plementation using only atomic read/write registers.
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PROOF. The first part of theorem follows from the fact that if φA(H) 6=
φA(H · B) and φB(H) 6= φB(H · A), then neither A �H B nor A ∼H B nor
B �H B.

The second part of the theorem is proven as follows. Execute the operations
in H sequentially, in order, in the implementation of X . This will yield a state
(〈H〉) for the implementation of X . Now X , in this state, solves 1-resilient
consensus between two processes 0 and 1 using the following protocol

0: if A applied to X returns φA(H)
then decide 0
else decide 1

1: if B applied to X returns φB(H)
then decide 1
else decide 0

Loui and Abu-Amara [LAA87] showed that 1-resilient consensus cannot be
achieved using only read/write registers. This completes our proof. �

Substituting A for B in the above theorem, we arrive at the following

Corollary 8 If for object X there exists an operation A ∈ O and a history
H such that

φA(H) 6= φA(H · A) ,

then X is not dynamically resilient and does not have a wait-free implement-
ation using only atomic read/write registers.

5 Impossibility results for statically resilient objects

The condition of equation (2) was shown to be implementable by a dynamically
resilient object in Theorem 6. In this section we will show that a statically
resilient object cannot satisfy equation (2).

We first prove transitivity of the overwrites relation.

Lemma 9 If P �H Q, Q �H R and Q �H·P R then P �H R.

PROOF. By Q �H·P R, 〈H ·P ·R〉 = 〈H ·P ·Q·R〉. By P �H Q, 〈H ·P ·Q·R〉 =
〈H ·Q·R〉. By Q �H R, 〈H ·Q·R〉 = 〈H ·R〉. We conclude 〈H ·P ·R〉 = 〈H ·R〉.
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It remains to show that φR(H · P ) = φR(H). By Q �H R we have φR(H) =
φR(H ·Q). By P �H Q, 〈H ·P ·Q〉 = 〈H ·Q〉 which gives φR(H) = φR(H ·P ·Q).
By Q �H·P R we have φR(H · P · Q) = φR(H · P ). �

Corollary 10 If P � Q and Q � R then P � R.

PROOF. If P � Q and Q � R, then for all H, P �H Q, Q �H R and
Q �H·P R. Hence for all H, by lemma 9, P �H R. �

Lemma 11 Suppose (∃H, H ′ :: φQ(H · H ′) 6= φQ(H · P · H ′)) for a statically
resilient X . Then there exists a history H ′′ such that φQ(H ′′) 6= φQ(H ′′ · P ).

PROOF. Pick a pair H, H ′ satisfying

φQ(H · H ′) 6= φQ(H · P · H ′) , (4)

such that H ′ has minimal length, say k. If k = 0 we are done, so we assume
k > 0.

Proposition 12 For all i with 1 ≤ i < k we have H ′[i] 6� H ′[i + 1].

PROOF. Suppose not. Then for some i we have 〈H ·H ′〉 = 〈H ·H ′[1 ·· i − 1] ·
H ′[i + 1 · · k]〉 and 〈H · P · H ′〉 = 〈H · P · H ′[1 · · i − 1] · H ′[i + 1 · · k]〉. Then
H and H ′[1 ·· i − 1] · H ′[i + 1 ·· k] (with length k − 1) satisfy Equation ((4))
contradicting the assumption that H ′ had minimal length. �

Proposition 13 For all i with 1 ≤ i ≤ k we have H ′[i] � P .

PROOF. We prove that for all R ∈ H ′ we have R � P by induction over
the prefixes of H ′. Consider H ′[1 · · 1]. If H ′[1] ∼ P , then 〈H · P · H ′〉 =
〈H ·H ′[1]·P ·H ′[2·· k]〉 and hence H ·H ′[1] and H ′[2·· k] (with length k−1) satisfy
((4)) contradicting the assumption that H ′ had minimal length. If P � H ′[1],
then 〈H · P · H ′〉 = 〈H · H ′〉 contradicting that φQ(H · H ′) 6= φQ(H · P · H ′)
Hence by Definition 2, H ′[1] � P .

Now suppose that for all minimal H ′ satisfying ((4)) we have H ′[i] � P . By
Proposition 12 and Definition 2 either H ′[i + 1] � H ′[i] or H ′[i] ∼ H ′[i + 1].
In the first case by Corollary 10 we have H′[i + 1] � P . In the second case,
〈H · H ′〉 = 〈H · H ′{i : i + 1}〉 and 〈H · P · H ′〉 = 〈H · P · H ′{i : i + 1}〉.
Hence, H and H ′{i : i + 1} satisfy ((4)), H ′{i : i + 1} has minimal length
k too, and H ′[i + 1] = H ′{i : i + 1}[i]. Hence by the induction hypothesis
H ′[i + 1] = H ′{i : i + 1}[i] � P . �
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Now consider 〈H · H ′ · P 〉 and 〈H · P · H ′ · P 〉. There are two cases.

(1) φQ(H ·H ′·P ) = φQ(H ·P ·H ′·P ). Using Equation ((4)), either φQ(H ·H ′) 6=
φQ(H · H ′ · P ) or φQ(H · P · H ′) 6= φQ(H · P · H ′ · P ).

(2) φQ(H · H ′ · P ) 6= φQ(H · P · H ′ · P ). Then by Proposition 13 we can
eliminate H ′ and we conclude φQ(H · P ) 6= φQ(H · P · P ).

This concludes the proof of the lemma. �

Now follow the main two impossibility results of this section

Theorem 14 A statically resilient object X with operation A ∈ O such that

(∃H, H ′ :: φA(H · H ′) 6= φA(H · A · H ′))

does not exist.

PROOF. Using Lemma 11 there exists a history H ′′ such that φA(H ′′) 6=
φA(H ′′ · A). But then, by Definition 1, neither A � A, nor A ∼ A. This
contradicts Definition 2. �

Theorem 15 A statically resilient object X with operation A, B ∈ O such
that

(1) (∃H, H ′ :: φA(H · H ′) 6= φA(H · B · H ′)), and
(2) (∃H, H ′ :: φB(H · H ′) 6= φB(H · A · H ′)),

does not exist.

PROOF. Using Lemma 11 there exist histories H and H ′ such that φA(H) 6=
φA(H ·B) and φB(H ′) 6= φB(H ′ ·A). But then, by Definition 1, neither A � B,
nor A ∼ B, nor B � A. This contradicts Definition 2. �

6 Discussion

We have shown that there exist objects X with a wait-free implementation
using only atomic read/write registers, that satisfy the following weak RMW
condition

(∃H1, H
′

1 :: φA(H1 · H
′

1) 6= φA(H1 · B · H ′

1)) ,

(∃H2, H
′

2 :: φB(H2 · H
′

2) 6= φB(H2 · A · H ′

2)) . (5)
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In other words, X has two operations A and B that both update the state
and return a meaningful value, with the additional constraint that in at least
one history H1, A observes (after a delay H ′

1) the state change effected by B

and vice versa (possibly in a different history H2). Indeed, the delays H ′

1 and
H ′

2 can be made as short as the empty history.

We show that such an object cannot be statically resilient. If we make equa-
tion (5) stronger by requiring that H1 must be equal to H2, and keeping
H ′

1 = H ′

2 = ε, then such an object is not even dynamically resilient and,
moreover, does not have a wait-free implementation using atomic read/write
registers any more. Notice that RMW objects satisfy this stronger version of
equation 5.

It is so far an open question whether we can implement an object using only
read/write registers satisfying equation (5) with H ′

1 = H ′

2 allowing for a finite
delay H ′

1 and H ′

2.
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