
Optimal Resiliency against Mobile Faults

(Extended Abstract)

Harry Buhrman∗ Juan A. Garay† Jaap-Henk Hoepman∗

CWI IBM T.J. Watson Research Center CWI
P.O. Box 94070 P.O. Box 704 P.O. Box 94070

1090 GB Amsterdam Yorktown Heights, NY 10598 1090 GB Amsterdam
The Netherlands USA The Netherlands

Abstract
In this paper we consider a model where malicious

agents can corrupt hosts and move around in a net-
work of processors. We consider a family of mobile-
fault models MF(t

n−1
, ρ). In MF(t

n−1
, ρ) there are a to-

tal of n processors, the maximum number of mobile
faults is t, and their roaming pace is ρ (for example,
ρ = 3 means that it takes an agent at least 3 rounds to
“hop” to the next host). We study in these models the
classical testbed problem for fault-tolerant distributed
computing: Byzantine agreement.

It has been shown that if ρ = 1, then agreement
cannot be reached in the presence of even one fault,
unless one of the processors remains uncorrupted for
a certain amount of time. Subject to this proviso, we
present a protocol for MF(1

3
, 1), which is optimal. The

running time of the protocol is O(n) rounds, also op-
timal for these models.

1 Introduction
We consider a model where malicious agents can

corrupt hosts and move around in a network of proces-
sors. The importance of this issue is rapidly growing
with the current trend of universalization of computer
networking and open systems, and, specially, with the
advent of the so-called “agent technology.” Previous
works have, in one way or another, addressed the is-
sue of dynamic faults. The following is a review of
these results. Perhaps the first article to consider a
model with malicious faults covering different fractions
of the network at different points in time is due to
Reischuk [14]. The author designed a (sub-optimal)
Byzantine agreement protocol able to tolerate them
as long as they remain stationary for a given inter-
val of time. More recently, Ostrovsky and Yung [12]
proposed randomized methods to withstand the at-
tack of mobile viruses. Canetti and Herzberg [3] use

∗Partially supported by the Dutch foundation for scientific
research (NWO) through NFI Project ALADDIN, under con-
tract number NF 62-376. E-mail: {burman,jhh}@cwi.nl.

†Work partially done while the author was visiting CWI.
garay@watson.ibm.com.

cryptographic techniques to achieve secure computa-
tion in a system where different sets of servers may
be broken into at different times, but not all at once.
In [8], Franklin and Yung address the issue of pri-
vacy in a system with mobile eavesdroppers. Finally,
Garay [9] presents agreement protocols that improve
on the work of Reischuk [14].

However, one common characteristic in all the
above results is that it is assumed that the faults
(viruses, agents) are able to change position from one
host to the next independently of when messages are
sent in the network. In contrast, in this paper we
make the more natural assumption that faults are able
to “travel” from one processor to another only when
messages are sent. This is in indeed the case with
network viruses (see, for example, [10]).1

For this model, we evaluate the classical testbed
problem for fault-tolerant distributed computing:
Byzantine agreement (BA) [11]. Loosely stated, the
problem requires processors in a communication net-
work, some of which may be faulty, and all of which
start the computation with an initial value, to decide
on the same value. Moreover, it is required that if
the initial value among the nonfaulty processors is the
same, then that must be the decision value. In fact, a
distinct characteristic of the mobile fault environments
is that once a global state is reached, then special ef-
forts must be dedicated in order to maintain it. This
leads us to consider a variant of the problem (defined
in Section 2) that is more adequate for these environ-
ments.

In this paper we review impossibility results for
this model, and present a protocol that requires the
optimal number of processors to achieve (and main-
tain) consistency in a network, in the presence of the
“fastest” mobile faults. (Indeed, as pointed out in [9],
the speed with which the faults can move is a funda-
mental parameters in this model.)

Finally, we emphasize that our model and work nec-

1However, one important distinction is that we will assume
that the total number of agents in the network is upper-bounded
by a parameter t, as opposed to “combinatorial explosion”-type
situations.

essarily represent an abstraction of things, in terms of
the faults’ power of disruption and coordination, as
well as of the “clean” synchronous structure and “in-
tegral” fault speed assumption we derive our bounds
on. The former assumptions we find necessary for the
analysis of scenarios where things can really go wrong
(e.g., life-critical applications; cryptographic settings;
etc.). The latter simplifications we consider important
for the understanding of the basic intricacies and is-
sues involved in faulty-agent mobility; once the basic
facts are established, similar results can hopefully be
extended and derived with lesser efforts for variants
and/or weaker versions of the model.

The rest of the paper is organized as follows. In
Section 2 we define more formally the Mobile Fault
model MF, as well as MBA, the version of the agree-
ment problem that is adequate for these new environ-
ments. In Section 3 we present the negative results,
while in Section 4 we present the protocol that toler-
ates the optimal number of fast-moving faults.

2 Mobile Fault Model
We are given a network of n processors numbered 1

through n that may communicate only by exchanging
messages via a reliable point-to-point channel. In or-
der to be able to measure and quantify more cleanly
the issue of mobility, we shall consider the standard
model (see, for example, [11]) of synchronous compu-
tation. In such a model, the network computation
evolves as a series of rounds, during which processors
can send one message to all other processors, receive
the messages, and perform some local computation.

We assume that in the network there are (mali-
cious) agents that can “corrupt” the processors. The
semantics of corruption is as follows: In order to un-
derstand the worst possible disruption that can be
caused in such a setting, we assume that the malicious
agents are able to take complete control over the ap-
plication being run, and even wipe out their memories.
Furthermore, the agents are mobile, meaning that they
can leave their current “hosts,” and move on to “in-
fect” new, different processors. Specifically, given the
computation’s round structure, we make the natural
assumption that the agents will “travel” or move with
the “Send” or “Broadcast” operations. We will also
assume that the total number of agents in the network
is bounded by a parameter t.

A consequence of the assumptions above is that, in
the worst case, processors which are left by the agents
and come “back to life” are unable to contribute in
any meaningful way to the on-going computation, and
will require the help of the currently correct proces-
sors in order to reconstruct the state of the execution
(including the code of the protocol being executed!).
This model is very powerful in terms of the agents’ dis-
ruptive capabilities but, as mentioned before, we are
interested in understanding what might be required
in worst-case scenarios (e.g., life-critical applications,
security settings, etc.). These assumptions can be
weakened in several ways. For example, one could as-
sume that some form of secure, tamper-proof memory
is available.

We shall refer to these agents as faults, or simply

agents. Given an assignment of the faults to the pro-
cessors at any given round, we will draw from the virus
terminology the term cured to refer to the processors
that were occupied by the agent in the previous round,
but no longer. We will refer to the remaining pro-
cessors not possessed by the agents as nonfaulty, or
noninfected.

We use the formalism of [9] to describe mobile
fault environments. A fundamental parameter in such
an environment is the roaming pace of the faults ρ,
[ρ] = # rounds

nodes
, with which the agents can travel in

the network. For convenience, we will normalize to
the number of rounds that it takes to move from one
processor/node to another. Thus, ρ = 3 indicates that
it takes an agent 3 rounds to “hop” to the next non-
faulty processor. Further, for simplicity, we only con-
sider the case of ρ ∈ N, the set of natural numbers.
We will sometimes refer to the case of ρ = 1 as “full
speed,” the case of ρ = 2 as “half speed,” etc.

We can now more formally define the Mobile Fault
model as a family MF of models indexed by the tuple
(t

n−1
, ρ). In MF(t

n−1
, ρ) there are a total of n proces-

sors, the maximum number of mobile faults is t, and
their roaming pace is ρ. (Granted that at first sight,
this notation is not the prettiest. However, it does al-
low us to express in a handy manner that, for example,
the number of faults is less than a third—of the size
of the network—and that they move at half speed.)
Notice that, in contrast with the traditional models
of static faults (for example, [13]) in which the only
restriction is the bound on the maximum number of
faults, there is no guarantee in the mobile-fault model
that a processor that is initially correct will remain
uninfected forever.

Intuitively, in this type of environment, as opposed
to the traditional environment of faults that are static,
things have more of a continuous, longer execution
flavor, since one cannot expect the (currently) nonin-
fected processors to reach meaningful conclusions after
a few rounds of communication. This is particularly
illustrated by the classical problem of achieving con-
sistency in such an environment. Recall the Byzantine
Agreement problem [11], which can be defined as fol-
lows. At the offset of the computation, each processor
p holds an initial value vp ∈ {0, 1}. Regardless of the
behavior of the faulty processors, required is a dis-
tributed protocol satisfying the following conditions:

• Decision: Every nonfaulty processor eventually
irreversibly decides on a value dp ∈ {0, 1}.

• Agreement: The nonfaulty processors decide
on the same value.

• Validity: If the initial values vp of all non-
faulty processors are identical, then dp = v for all
nonfaulty processors p.

However, notice that in MF, if there is a point in
time when the three conditions are satisfied, the fact
that the faults can continue to move along will make
this global condition disappear. Thus, in this paper we
consider Mobile-Fault Byzantine Agreement (MBA), a

version of the problem that was presented in [9] that
is adequate for the mobile-fault environment. MBA is
defined similarly to the BA problem above, together
with the additional condition:

• Consistency Maintenance: Once Agreement
is achieved among the currently noninfected pro-
cessors, it is preserved among the (possibly differ-
ent) noninfected processors.

This condition captures the contrast of MF with re-
spect to the traditional models, in that if there is
a moment (interval) in time in which a consistency
state is achieved among the currently noninfected pro-
cessors, then special efforts will have to be dedicated
to maintaining such a state, by having the processors
that participated in the decision “pass the token” to
the processors that re-join the computation after the
agents have left them.

Albeit being more stringent, Consistency Main-
tenance resembles the correctness condition of self-
stabilizing protocols (e.g., [4]). In our case, however, it
is required that the correctness (consistency) state be
maintained once it is reached, even if faults continue
to occur. We will sometimes abuse the language and
say that MBA is “achieved,” meaning that consistency
is reached, and from that point on, maintained.

3 Impossibility Results
It is well known that in the case of t static (arbi-

trary) faults, BA is achievable whenever the size of
the network n > 3t [11]. It turns out that in the case
of faults that may move, there is a tight relationship
between their speed (pace) and the number of faults
that can be tolerated. The following, somewhat cu-
rious result from [9], also applies to our model where
the agents can only move with the messages:

Proposition 3.1 [9] In MF(·, 1), BA can only be
achieved if t = 0.

The proof of this proposition is an extension of the
lower bound of Dolev and Strong [6], which shows
that t + 1 rounds of communication are needed in the
classical setting of static faults with a maximum of t
faults. The basic idea is that by having a single mobile
agent “hopping” from one processor to the next, one
can construct executions that exhibit serial faultiness,
in the sense that at each round a new processor mis-
behaves. Assuming now that BA can be achieved in
k (not necessarily < n) rounds, techniques similar to
those of [6] can be used to show that all executions
are equivalent—in the sense of the currently nonin-
fected processors deciding on the same value—to that
in which the source does not send any value, a contra-
diction.

The above result is fairly extreme: Can’t even tol-
erate one fault if it moves at full speed! One may
wonder if the situation gets any better by slowing the
faults down. This is what the following proposition—a
generalization of Proposition 3.1—characterizes:

Proposition 3.2 [9] In MF(·, ρ), BA is possible only
if t < ρ.

Roughly speaking, the proposition is proved by the
t agents implementing serial faultiness through coor-
dination. Note that one can now view the case of
ρ ≥ t + 1 as corresponding to the classical setting of
static faults, in the sense that if the faults remain im-
mobile for at least that long, then protocols exist that
are guaranteed to yield agreement in that much time.
Given Propositions 3.1 and 3.2, the following condition
constitutes one way of overcoming the above difficul-
ties:

(I) At least one processor remains uncorrupted.

In practice, condition I captures situations where not
all places in the network are equally accessible to the
faults. We also note that if the identity of the proces-
sor that cannot be corrupted by the faults is known
beforehand to all processors, then the problem we are
trying to solve becomes trivial. We will thus assume
that this is not the case. The condition does not spec-
ify the length of the period during which the processor
cannot be corrupted. In the next section we present
a protocol that requires a processor to remain uncor-
rupted for O(n) rounds of communication.

Another consequence of the I condition is that a
direct application of the so-called full information pro-
tocols (e.g., [1, 11]) where all correct processors send
their views to all other processors, and this for t + 1
rounds, will not work here. An essential requirement
for these protocols to work is that of the “pigeon-hole”
principle: A time is needed where a “clean round”
(i.e., no new faults) occurs [5], and this cannot be
guaranteed given the mobility of the faults. Indeed,
as pointed out in [9], in contrast with the classical
setting of static faults, solutions to MBA necessitate
a time proportional to n, the size of the system, as
opposed to t. Specifically:

Corollary 3.3 Every MBA protocol requires n
rounds of communication in its worst-case run.

Finally, the lower bound on the number of processors,
as a function of the number of faults (n > 3t [13]), also
holds for MF systems satisfying I. In the next section,
we present a protocol for MF(1

3
, 1) (i.e., optimal number

of processors and faults af full speed) that relies on I
to achieve MBA in 3n rounds.

4 Agreement Protocols for Mobile

Faults
Given condition I and the observation from the

previous section on the failure in MF of the classical
full information protocols, a natural type of solution
to look at is the Phase King paradigm of Berman and
Garay [2], since its correctness relies on the eventual
existence of a good processor (the “King”). The exe-
cution of a protocol adhering to this paradigm is di-
vided into phases, each with a different king. In a
phase, the following steps take place:

1. Round(s) of exchange of messages and computa-
tion among all processors; and

2. all processors listen to the King.

The purpose of 1 is to eliminate possible discrepancies
in the configuration of existing values, and discover the
unique value, if such exists. In 2, processors that are
not “overwhelmingly convinced” of the existence of a
unique value, trust the king of the phase and adopt his
value. The reader is referred to [2] for further details.

However, a direct use of the existing Phase King
protocols for the static-fault models is not possible,
since even if unanimity is achieved by the currently
correct processors at a given round, that state may
disappear as the agents move along. This brings us
to the concept of reconstruction of information, the
subject of the next section.

4.1 Network Memory
The basic idea is to the use of the network as a

collective memory device. Cryptographic settings—
where not all parties can be trusted—are the natural
places where these techniques originated (e.g., [15]).
More recently, the concept of network memory has
been utilized by Ostrovsky and Yung [12] and
Garay [9]. The concept can be briefly formulated as
follows. Let a network object O be defined by the tu-
ple <round number, processor id, data>. Then, given
a big enough fraction of noninfected processors at all
times, it is possible for a correct processor to store
O in the network by sending copies to all processors,
maintain it for a period of time (say, k rounds), and
reconstruct it whenever needed. In this section we
will be interested in storing objects for just one round.
Specifically, we establish the following simple fact for
MF(1

3
, 1):

Lemma 4.1 Let p be a noninfected processor at round
r. Then in MF(1

3
, 1), every correct processor (cured or

noninfected) can reconstruct at r +1 any object stored
by p at r.

Proof: In round r, p is correct, and stores m in the
network by sending a copy of m to all processors. This
message is received in round r by at least 2t+1 correct
processors: at least t + 1 that remained correct since
last round, plus at least t more, either because they
remained correct, or because they became cured. In
round r + 1, all of these processors echo O. The new
object becomes:

O =

{

< r, p, m > if received m from at least
2t + 1 processors;

< r, p,⊥> otherwise.

Since in round r + 1 at most t of the messages come
from processors that were infected in round r, all the
correct processors at round r+1 receive m with multi-
plicity at least 2t+1, and are thus able to reconstruct
m.

Note that there is no guarantee that objects stored by
infected processors will be univocally reconstructed,
but this will be of no consequence to us. Lemma 4.1
can be generalized to reconstruct objects stored, say,
k rounds back. Notice though that in MF, per the
argument above, it is imperative that the copies of
the object be continuously refreshed.

4.2 A Protocol with Optimal Resiliency
We are now ready to introduce Mopt, a proto-

col that is able to cope with mobile faults, for model
MF(1

3
, 1). The protocol is shown in Figure 1. It consists

of phases, each consisting of three rounds of message
exchange. There are three values that get transmit-
ted at any given time: ⊥ (for “undecided”), 0, and 1;
we assume that ⊥< 0. In “universal exchange 1,” all
the currently correct processors send their values V
to all processors, and store the received values in vec-
tor MV . (We assume that the cured processors have
the ability to receive messages. These would also in-
clude the protocol itself and the global state of the
execution—e.g., round number—which we omit for
clarity.) Each processor (both noninfected and cured)
then checks if there exists a value ∈ {0, 1} that is very
popular among the received values. If not, the pro-
cessor stays undecided. The structure of “universal
exchange 2” is similar to that of the first exchange,
except that its purpose is the discovery of a unique
value, if such exists. Again, it could be that in this
exchange up to t agents decide to move to new hosts.
The cured processors get up to speed by computing
the values of D[·] based on the received MV ’s. In the
“reconstruction and king’s broadcast” exchange, pro-
cessors re-send their MV ’s from the previous round,
which they store in table ECHO. Processors that be-
came cured in this round use that introspective ability
to execute procedure Reconstruct, shown in Fig-
ure 2. Finally, if a correct (cured or noninfected) is ei-
ther still undecided, or not overwhelmingly convinced
about the existence of a possibly unique value, it “lis-
tens” to processor k, the king of the phase. Since
all processors are supposed to send their “view” (i.e.,
MV) from the last round, every processor is able to re-
produce the king’s computation (i.e., Vk). . Note that
in Mopt the reconstruction procedure is only used in
the last exchange.

We now address the correctness of the protocol. We
first define the following potential function:

Φv(r)
def
= the number of correct processors p for
which Vp = v at the end of phase r.

Observe that the Consistency Maintenance condition
of MBA enforces on functions Φ the property that
whenever they reach the “ceiling” of n−t, they should
irrevocably remain there. The next lemma shows that
this is indeed the case for Mopt. For simplicity we
assume n = 3t + 1.

Lemma 4.2 (Consistency Maintenance) In
MF(1

3
, 1), if in phase f ≥ 0 of Mopt Φv(f) ≥ 2t + 1

holds for some v ∈ {0, 1}, then Φv(r) ≥ 2t + 1 holds
at all phases r > f .

Proof: Assume Φv(f) ≥ 2t + 1 holds for some
v ∈ {0, 1}. In universal exchange 1 of phase f + 1 at
least 2t + 1 v’s get sent, and since for each fault that
moves there is a cured processor, each correct (cured
or noninfected) processor has C[v] = 2t + 1 ≥ n − t
and C[v] ≤ t < n − t. Thus, all of these processors
assign v to V .

protocol Mopt;
V := vp;
for r := 0 to ∞ do begin

(* universal exchange 1 *)
broadcast(V);
receive(MV [·]);
for j := 0 to 1 do C[j] := # of j’s in MV ;

V :=

{

0 if C[0] ≥ n − t

1 if C[1] ≥ n − t

⊥ otherwise
;

(* universal exchange 2 *)
broadcast(V);
receive(MV [·]);
for j :=⊥ to 1 do D[j] := # of j’s in MV ;

V :=

{

0 if D[0] > t

1 if D[1] > t

⊥ otherwise
;

(* reconstruction and king’s broadcast *)
broadcast(MV [·]);
for each i do

ECHO[i, ·] := MV [·] received from i;
if cured then

Reconstruct;
k := (r mod n) + 1; (* k is the phase’s king *)
if (V =⊥ or D[V] < n − t) then

V := max(0, Vk); (* Vk is value received
from k *)

end;

Figure 1: A protocol for MF(1
3
, 1); code for proc. p.

In universal exchange 2, at least 2t + 1 processors
send v, and again for at least 2t + 1 cured and non-
infected processors D[v] ≥ n − t and D[w] ≤ t, for
w ∈ {⊥, v}, assigning v to V .

During the reconstruction and king’s broadcast ex-
change, of the 2t+1 correct processors from the previ-
ous round, at least t+1 processors remain uninfected,
and therefore ignore the king’s broadcast. Of the re-
maining t correct processors from the previous round,
again for each new infected processor there is a cured
processor. Each cured processor executes procedure
Reconstruct, and it follows from Lemma 4.1 that
each cured processor computes D[v] = 2t + 1 ≥ n− t,
and V = v, thus also ignoring the king’s broadcast.
This yields at least 2t + 1 correct processors V = v at
the end of phase f + 1, and thus Φv(f + 1) ≥ 2t + 1.
Now the situation repeats itself, and we are done.

Theorem 4.3 In model MF(1
3
, 1) satisfying condition

I, protocol Mopt achieves Mobile Byzantine Agree-
ment in 3n rounds of communication.

Proof: We first consider Validity. The configuration
is unanimous at the start of phase 0 with at least 2t+1
noninfected processors holding value v ∈ {0, 1}. Sim-
ilar arguments to those of Lemma 4.2 allows us to

procedure Reconstruct;
for each i do

if ∃ v ∈ {⊥, 0, 1} s.t. ECHO[·, i] = v

at least n − t times then

MV [i] = v

else

MV [i] = ‘ ’;
for j :=⊥ to 1 do D[j] := # of j’s in MV ;

V :=

{

0 if D[0] > t

1 if D[1] > t

⊥ otherwise
;

end;

Figure 2: Procedure Reconstruct for MF(1
3
, 1).

establish that Φv(0) ≥ 2t + 1, and using Lemma 4.2
for the following phases yields the theorem.

We now address Agreement. Let I be the phase cor-
responding to the processor that cannot be corrupted
by the faults. In particular, I will be sending the same
MV in the “reconstruction and king’s broadcast” ex-
change as it did in “universal exchange 2.” Two cases
are possible after the last exchange of phase I :

1. Dp[Vp] < n− t or Vp =⊥ for every correct (cured
or noninfected) p. Then all processors execute the
assignment to V . As I is correct by assumption,
all correct processors receive the same MV from
I , and compute the same VI . If VI =⊥, they all
assign 0 to V .

2. Dp[V] ≥ n − t and Vp 6=⊥ for at least some cor-
rect (cured or noninfected) p. Lemma 4.1 and
the fact that there are no more than t corrupted
processors guarantee that |Cq[v] − Cr[v]| ≤ t and
|Dq[v] − Dr[v]| ≤ t, for every non-faulty q, r and
v ∈ {⊥, 0, 1}. Therefore, if a correct processor p
computes Dp[Vp] ≥ n − t after the second uni-
versal exchange (or reconstructs and computes
Dp[Vp] ≥ n − t during the reconstruction and

king’s broadcast), then Dq[Vp] > t and Dq[Vp] ≤ t
for all other correct processors q, including the
king I. As a result, each correct processor q has
Vq = VI at the end of the phase, either because it
ignores I ’s value, or because of accepting it.

In either case, all correct processors have the same
value in V at the end of phase I , and Lemma 4.2
applies.

Regarding the round complexity, observe that I ’s
turn becomes at phase n at the latest.

5 Final Remarks
In this paper we have studied the problem of t ma-

licious agents moving around in a network of n pro-
cessors. In contrast with previous works, the agents in
our model can only move when messages are sent in
the network. Subject to the condition that one of the
processors remains uncorrupted for a certain amount

of time, we have presented a protocol to reach and
maintain agreement among the uncorrupted proces-
sors that tolerates the maximal number of bad agents
(namely, t < n

3
), in 3n communication rounds. Notice

the gap between the running time of our protocol and
that of Corollary 3.3. We also point out that if ran-
domization is allowed, then the above condition can
be dropped, and techniques similar to those of [7] can
be used in a straightforward manner to reach agree-
ment in O(1) expected time, but only tolerating up to
t < n

6
mobile agents. Can this be improved?

Acknowledgements
The authors are thankful to Mark Moir for useful

comments and suggestions. This work was partly car-
ried out while J. Garay was visiting CWI. The author
thanks the Center for its ambiance and hospitality.

References
[1] A. Bar-Noy, D. Dolev, C. Dwork and H.R. Strong,

“Shifting gears: changing algorithms on the fly to
expedite Byzantine Agreement,” Proc. 6th PODC,
pp. 42-51, August 1987.

[2] P. Berman and J.A. Garay, “Asymptotically Op-
timal Distributed Consensus,” Proc. ICALP 89,
LNCS Vol. 372, pp. 80-94, July 1989.

[3] R. Canetti and A. Herzberg, “Maintaining Secu-
rity in the Presence of Transient Faults,” Proc.
Advances in Cryptology—Crypto ’94, pp. 425-438,
LNCS (839), Springer Verlag, August 1994.

[4] E.W. Dijkstra, “Self-stabilizing systems in spite
of distributed control,” Communications of the
ACM, 17(11), pp. 643-644, 1974.

[5] C. Dwork and Y. Moses, “Knowledge and Com-
mon Knowledge in a in Byzantine Environment:
Crash Failures,” Information and Computation,
Vol. 88, No. 2 (1990), pp. 156–186.

[6] D. Dolev and H.R. Strong, “Polynomial Algo-
rithms for Multiple Processor Agreement,” Proc.
14th STOC, pp. 401-407, May 1982.

[7] P. Feldman and S. Micali, “Optimal Algorithms
for Byzantine Agreement,” Proc. 20th STOC,
pp. 148-161, May 1988.

[8] M. Franklin and M. Yung, “Eavesdropping Games:
A Graph-Theoretic Approach to Privacy in Dis-
tributed Systems,” Proc. 34th FOCS, pp. 670-679,
November 1993.

[9] J.A. Garay, “Reaching (and Maintaining) Agree-
ment in the Presence of Mobile Faults,” Proc.
8th International Workshop on Distributed Algo-
rithms, LNCS (857), Springer-Verlag, pp. 253-264,
Terschelling (NL), September/October 1994.

[10] J. Kephart and S. White, “Directed-graph epi-
demiological models of computer viruses,” Proc.
1991 IEEE Computer Society Symp. on Research
in Security and Privacy, pp. 343-359, Oakland,
CA, May 1991.

[11] L. Lamport, R.E. Shostak and M. Pease, “The
Byzantine Generals Problem,” ACM ToPLaS,
Vol. 4, No. 3 (1982), pp. 382-401.

[12] R. Ostrovsky and M. Yung, “How to withstand
mobile virus attacks,” Proc. 10th PODC, pp. 51-
59, 1991.

[13] M. Pease, R. Shostak and L. Lamport, “Reach-
ing Agreement in the Presence of Faults,” JACM,
Vol. 27, No. 2 (1980), pp. 121-169.

[14] R. Reischuk, “A New Solution for the Byzantine
Generals Problem,” Information and Control, Vol.
64 (1985), pp. 23-42.

[15] A. Shamir, “How to share a secret,” CACM, 22,
pp. 612-613, 1979.

