
Randomised Mutual Search for k > 2 Agents?

Jaap-Henk Hoepman

Department of Computer Science, University of Twente
P.O.Box 217, 7500 AE Enschede, the Netherlands

hoepman@cs.utwente.nl

Abstract We study the efficiency of randomised solutions to the mu-
tual search problem of finding k agents distributed over n nodes. For a
restricted class of so-called linear randomised mutual search algorithms
we derive a lower bound of k−1

k+1
(n + 1) expected calls in the worst case.

A randomised algorithm in the shared-coins model matching this bound
is also presented. Finally we show that in general more adaptive ran-
domised mutual algorithms perform better than the lower bound for the
restricted case, even when given only private coins. A lower bound for
this case is also derived.

1 Introduction

Buhrman et al. [BFG+99] introduce the mutual search problem, where k agents
distributed over a complete network of n distinct nodes are required to learn
each other’s location. Agents can do so by calling a single node at a time to
determine whether it is occupied by another agent. The object is to find all other
agents in as few calls as possible. Buhrman et al. study this problem extensively
for synchronous and asynchronous networks, and both in the deterministic and
randomised case, predominantly for k = 2 agents.

The prime motivation for studying this problem is the cost of conspiracy
start-up in secure multi-party computations, or Byzantine agreement problems.
Traditionally, this area of research assumes that all adversaries have complete
knowledge of who and where they are, and that the adversaries can immediately
collude to break the algorithm. The question is how hard it is to achieve this
coordination, and how much information the good nodes in the system learn
about the location of the adversaries during this coordination phase. For details
and more examples we refer to Buhrman et al. [BFG+99].

Lotker and Patt-Shamir [LPS99] focus on randomised solutions to the mutual
search problem in the special case of k = 2 agents. They prove a lower bound of
n+1

3
expected calls in the worst case for any synchronous randomised algorithm

for mutual search, and present an algorithm achieving this bound in the shared
coins model.

This paper is the first to consider the general case of k < n agents for
randomised solutions. We generalise the results of Lotker and Patt-Shamir to a
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lower bound of1
k − 1

k + 1
(n + 1) = k − 1 +

k − 1

k + 1
(n − k)

expected calls in the worst case for a restricted class of linear synchronous ran-
domised algorithms (see Section 2 for an explanation of this term) that only
depend on the calling history in a limited fashion. We note here that all mutual
search algorithms for k = 2 agents are linear by definition. We also present an
algorithm achieving this bound, in the shared coins model.

Compared to the upper bound of Buhrman et al. [BFG+99] of

k(k − 1)

k(k − 1) + 1
× n

for the deterministic case, we see that our randomised algorithm can handle
roughly the square of the number of agents at the same or less cost.

Moreover, we show that more adaptive randomised mutual search algorithms
outperform linear algorithms, even when the nodes are given access to a private
coin only. Using shared coins we obtain a randomised algorithm whose worst
case expected cost equals

k − 1 +

(

k − 1

k + 1
−

k − 2

n

)

(n − k) .

For the private coins model, and in the particular case where k = n−1, we present
a randomised algorithms whose worst case expected cost equals k − 1 + 1

2
.

Finally, we derive a lower bound of

k − 1 +
n − k

k + 1

expected calls in the worst case for any randomised mutual search algorithm.
For k > 2, there are basically two choices on how to proceed when two agents

find each other. They either just record each other’s location and proceed to find
all other agents independently, or they ‘merge’ into a single node where a single
master agent in the merger is responsible for making all calls. In the second case,
a call reaching any agent in the merged set discovers all agents in the set. Our
results hold in the latter, merging agents, model. Lower bounds in this model
also hold for the independent agents model.

The paper is organised as follows. In Section 2 we extend the notion of
a mutual search algorithm to k > 2 nodes. We then present our results on
linear algorithms in Section 3. This includes the upper bound in Section 3.1, a
discussion on linear algorithms in Section 3.2, and the lower bound in Section 3.3.
Next, we present the upper bounds for unrestricted mutual search algorithms
in Section 4, both in the shared coins model (Section 4.1) and the private coins
model (Section 4.2). Section 4.3 contains the lower bound for the unrestricted
case. We conclude with some directions for further research.
1 The second formulation of the bound visually separates the minimal number of suc-

cessful calls k−1 from the fraction of unsuccessful calls among the n−k unoccupied
nodes.



2 Preliminaries

Let V be a set of n labelled nodes, some of which are occupied by an agent.
The set of nodes occupied by an agent is called an instance of the mutual search
problem, and is represented by a subset I of the nodes V . We use k = |I| for the
number of agents. Agents are anonymous, and are only identifiable by the node
on which they reside.

The nodes V lie on a completely connected graph, such that each agent can
call every other node to determine whether it is occupied by another agent. If
so, such a call is successful, otherwise it is unsuccessful. Nodes not occupied by
agents are passive: they cannot make calls, and cannot store information to pass
from one calling agent to the next.

Initially each agent only knows the size and labelling of the graph, the total
number of agents on the graph, and the label of the node it occupies. The mutual
search problem requires all agents on the graph to learn each other’s location,
using as few calls as possible (counting both successful and unsuccessful calls).
A mutual search algorithm is a procedure that tells each agent which nodes to
call, such that all agents are guaranteed to find each other. We only consider
synchronous algorithms where in each time slot t a single agent makes a call.
For each agent, the decision whether to make a call, and if so, which node to
call, depends on the time slot t, the label of the node on which it resides, and
on the result of the previous calls made and received.

With each successful call, agents are assumed to exchange everything they
know so far about the distribution of agents over the graph. We distinguish
two models. In the independent agents model, each agent is responsible to learn
the location of all other agents on its own (of course using all information ex-
changed with a successful call). In the merging agents model, a successful call
transfers the responsibility to find the remaining agents to the agent called (or
the agent responsible for making calls on this agent’s behalf)2. In this model
the mutual search algorithm conceptually starts with k clans (or equivalence
classes [BFG+99]) each containing a single agent. Each successful call merges
two clans into a single clan with a single leader, until a single clan with all k
agents remains. Information flow within a clan is for free: all agents in a clan im-
plicitly learn the location of newfound agents. As the latter model is potentially
more efficient, we only consider the merging agents model.

We note that there is a trivial lowerbound of k − 1 calls for any mutual
search algorithm for k agents over n nodes, provided that k ≥ 2 and k < n. If
the algorithm makes less than k−1 calls, at least one of the agents did not make
or receive a call and therefore cannot know the location of the other agents. For
n = k (or k = 1) the cost drops to 0, because agents know n and k.

2 This is similar to the merging fragments approach for constructing minimum weight
spanning trees used by Gallager et al. [GHS83].



2.1 Algorithm representations

For k = 2, a deterministic synchronous mutual search algorithm can be repres-
ented by a list of directed edges E. Edge −→vw is at position t in the list if an agent
on node v needs to query node w at time slot t. The order in the list is repres-
ented by ≺. We will call this list the call list. The actual calls made will depend
on the distribution of the agents over the nodes. In this setting, A = (V,E,≺)
completely describes a synchronous deterministic mutual search algorithm for
k = 2 agents. In fact, because the algorithm needs to make sure that any pair of
agents can find each other, the graph (V,E) is a tournament.

For k > 2 the picture is much less clear. As an agent learns the location of
some of the other agents, it may adapt itself by changing the order of future
calls, or dropping certain calls altogether. One way of describing such a mutual
search algorithm would be to divide each run of the algorithm on a particular
instance I in rounds. Whenever the algorithm makes a successful call (finding
another agent or clan and merging the clans), a new round starts. The algorithm
starts in round 1 to find the first pair of agents, and stops after the k−1-th round
when all k agents are merged into one3. Round boundaries represent knowledge
changes. At such a boundary, the algorithm has to decide on a new strategy to
find the next agent, and has to stick to this strategy until it finds it (or gets
found). This strategy change cannot be global: only merged nodes can change
their strategy, because they are the only nodes that are aware of the merge. Also,
this strategy change can only depend on the agents found so far.

For a restricted class of so called linear algorithms we will derive matching
upper and lower bounds. The class of linear mutual search algorithms defined
below includes algorithms which are only marginally adaptive, but also forward
calling algorithms that merge agents one by one into one single growing clan.

Definition 2.1. A mutual search algorithm A to find k agents is linear, if for
all instances I of size k + 1

– A makes at least k − 1 successful calls4 when started on instance I, and
– for the first k − 1 successful calls −→vw made by A when started on instance

I, A still makes a (now unsuccessful) call to w when started on instance
I − {w}.

This topic is discussed in Sect. 3.2. We note that any mutual search algorithm
for k = 2 agents is always linear.

2.2 Properties of binomials

The following properties of binomials are used in some proofs in this paper.

3 We assume that no algorithm makes calls between agents in the same clan (that
already know each other’s location). Therefore the graph of successful calls is acyclic,
and spans all k agents when k − 1 successful calls have been made.

4 It is not immediately obvious that an algorithm to find k agents when started on an
instance of k′ > k agents will always run until it has made k − 1 successful calls.



Property 2.2. We have

c

(

c − 1

k − 2

)

= (k − 1)

(

c

k − 1

)

. (1)

From Feller [Fel57], p. 64, we get

r
∑

v=0

(

v + k − 1

k − 1

)

=

(

r + k

k

)

. (2)

Using this equation we derive

n−1
∑

c=k−1

(

c

k − 1

)

=

(

n

k

)

. (3)

Combining Equation (1) and (3) we conclude

n−1
∑

c=k−1

c

(

c − 1

k − 2

)

= (k − 1)

(

n

k

)

. (4)

3 Bounds on linear algorithms

In this section we prove a lower bound of

k − 1

k + 1
(n + 1)

on the worst case expected number of calls made by any randomised mutual
search algorithm to find k agents among n > k nodes, and match this with
a randomised algorithm (in the shared coins model) achieving this bound. We
present the algorithm first, and then prove the lower bound.

3.1 Upper bound

The upper bound is proven using the following straightforward algorithm.

Algorithm 3.1. First all nodes relabel the nodes according to a shared random
permutation of {0, . . . , n − 1}. The algorithm then proceeds in synchronous pulses
(starting with pulse 0). An agent on node i (after relabelling) is quiet upto pulse i.

– If it does not receive a call at pulse i − 1 (or if i = 0), in pulses i, i + 1, . . .
it calls nodes i + 1, i + 2, . . . until it has contacted all k − 1 other agents.

– If a node i receives a call at pulse i−1, it remains quiet for all future pulses.

Using this algorithm the agent on the first node (after relabelling) of the instance
will call all other nodes. All other agents will remain silent. We note that the
algorithm is linear.



Theorem 3.2. Algorithm 3.1 has worst case expected cost

k − 1

k + 1
(n + 1) .

Proof. Let I be a distribution of k agents over the n nodes. By performing the
relabelling, the algorithm R in effect performs input-randomisation and selects
a random instance I ′ after which it continues deterministically performing c(I ′)
calls. Note that in pulse i, R calls i + 1 if and only if there is an agent at some
j < i + 1 and not all agents have been found yet. We conclude that c(I ′) equals
the distance between the first and last node in I ′.

The expected cost of any instance I is given by

∑

|I′|=k

c(I ′)Pr[I = I ′] .

Splitting into instances with equal cost, this is equal to

(

n

k

)−1
∑

c

c × the number of instances I ′ with |I ′| = k and cost c . (5)

The minimal cost is k − 1, the maximal cost is n − 1. For a given cost c, the
range 0, . . . , n− c− 1 of n− c nodes is a viable location for the first agent in the
instance. Let f denote the position of the first agent. The last agent then resides
at f + c (or else the cost would not equal c). The remaining k − 2 agents can be
distributed over the range f + 1, . . . , f + c − 1 of c − 1 nodes. This shows that
Equation (5) equals

(

n

k

)−1 n−1
∑

c=k−1

c(n − c)

(

c − 1

k − 2

)

which equals

(

n

k

)−1
(

n−1
∑

c=k−1

cn

(

c − 1

k − 2

)

−

n−1
∑

c=k−1

c2

(

c − 1

k − 2

)

)

{Using Equation (4) and (1).}

=

(

n

k

)−1
(

n(k − 1)

(

n

k

)

− (k − 1)

n−1
∑

c=k−1

c

(

c

k − 1

)

)

= (k − 1)

(

n

k

)−1
(

n

(

n

k

)

−

n−1
∑

c=k−1

(c + 1)

(

c

k − 1

)

+

n−1
∑

c=k−1

(

c

k − 1

)

)

{Using Equation (1).}

= (k − 1)

(

n

k

)−1
(

n

(

n

k

)

−

n−1
∑

c=k−1

k

(

c + 1

k

)

+

n−1
∑

c=k−1

(

c

k − 1

)

)

{Using Equation (3).}



= (k − 1)

(

n

k

)−1 (

n

(

n

k

)

− k

(

n + 1

k + 1

)

+

(

n

k

))

= (k − 1)

(

n −
k(n + 1)

k + 1
+ 1

)

=
k − 1

k + 1
(n + 1)

This completes the proof. ut

3.2 Linear Algorithms

In this section we give a characterisation of the class of linear mutual search
algorithms as defined by Definition 2.1. This includes two important classes of
mutual search algorithms defined next.

Definition 3.3. A mutual search algorithm A is non-adaptive, if for all in-
stances I and for each successful call f between clan C and C ′ at the end of
round i the following holds.

– The call list for round i + 1 of the merged clan C ∪ C ′ equals the union of
the call lists for round i of the clans C and C ′ restricted to the calls ordered
after the successful call f

– In the resulting call list, for each call the caller is replaced with the new leader
of the clan C ∪ C ′.

– From this list all calls to nodes already called by one of the clans are removed,
as well as duplicate calls to the same destination, in which case the first call
(according to ≺) is retained.

Definition 3.4. A mutual search algorithm A is forward-calling, if for all in-
stances I and for all successful calls −→vw,−→xy made by A on instance I

w = x implies −→vw ≺ −→xy .

We have the following characterisation of linear mutual search algorithms.

Lemma 3.5. Both non-adaptive and forward calling mutual search algorithms
are linear.

Proof. Observe that for a forward calling algorithm started on an instance I,
each successful call of a clan reaches a clan containing a single member agent.
Therefore, a forward calling algorithm grows a single clan that contains i agents
during round i. If I contains k + 1 agents, A stops at round k when the clan
contains k agents. So A makes k − 1 successful calls.

If A calls w in the course of the algorithm, w is the single member of its own
clan. Hence w made no successful calls and was not contacted by another agent
up till now. Hence removing the agent from w does not affect the strategy of A
up to this point, and hence A will call w.



Observe that for a non adaptive algorithm, a clan C calls a node w iff there
is a node v in the clan containing an agent for which −→vw is on its initial call list
(at the very start of the algorithm). If we remove the agent from v, all other
agents in C will call only a subset of the nodes called by C originally, and will
do so no sooner than C would have done.

Hence if for an instance I of size k + 1 two clans C,C ′ merge at some time t
by the call −→vw, removing the agent from node w in C ′ will not result in any calls
to C from the remaining agents in C ′ before time t. Hence C cannot distinguish
these different instances, and will make the same calls (including the call to w).

This also shows that any clan of size less than k that occurs while running
the algorithm on an instance I of size k + 1 also occurs on an instance I ′ of size
k where an agent is removed from a node not in the clan. Hence, a non-adaptive
algorithm cannot distinguish between instances of size k and k + 1 untill all
agents have been found. This proves that a non-adaptive algorithm will make at
least k − 1 calls on an instance of size k + 1. ut

3.3 Lower bound

We now proceed to prove a lower bound on linear mutual search algorithms. In
the proof, we use the following result of Yao [Yao77].

Theorem 3.6 ([Yao77]). Let t be the expected running time of a randomized
algorithm solving problem P over all possible inputs, where the expected time
is taken over the random choice made by the algorithm. Let t′ be the average
running time over the distribution of all inputs, minimized over all determinisitc
algorithm solving the same problem P . Then t > t′.

Therefore, we first focus our attention to the behaviour of deterministic al-
gorithms on random instances.

Fix n and k < n. Let A be a linear deterministic mutual search algorithm
with |V | = n to locate k agents.

Definition 3.7. Let I be an instance, and let v, w ∈ V . Define

ΦA(−→vw, I) = 1

if and only if −→vw is an unsuccessful call (i.e. v ∈ I, w 6∈ I) made by algorithm A
to locate all agents in the instance I.

Then for the total cost CA(I) of algorithm A on instance I we have

CA(I) = k − 1 +
∑

v∈I
w∈V −I

ΦA(−→vw, I) , (6)

where the k − 1 term is contributed by all successful calls made.

Lemma 3.8. Let J be an arbitrary set of k+1 ≤ n nodes. Let A be linear. Then
∑

v,w∈J
v 6=w

ΦA(−→vw, J − {w}) ≥ k − 1 . (7)



Proof. Run A on instance J . By Definition 2.1, A will have made at least k − 1
successful calls. Take the first k − 1 successful calls. By Def. 2.1, for each of the
first k − 1 successful calls −→vw, removing w does not affect the fact that v calls
it. Hence ΦA(−→vw, J − {w}) = 1. Hence the sum is at least k − 1. ut

This lemma allows us to give a bound on the expected cost of a random instance
for a given algorithm A.

Lemma 3.9. Let A be a linear deterministic mutual search algorithm for k
agents over n > k nodes. Then the expected cost E[CA(I)] of a random instance
I = I of k agents is bounded by

E[CA(I)] ≥
k − 1

k + 1
(n + 1) . (8)

Proof.

E[CA(I)] =
∑

I⊂V
|I|=k

CA(I) Pr[I = I]

=
∑

I⊂V
|I|=k

CA(I)

(

n

k

)−1

{By Equation (6).}

=

(

n

k

)−1
∑

I⊂V
|I|=k









k − 1 +
∑

v∈I
w∈V −I

ΦA(−→vw, I)









= k − 1 +

(

n

k

)−1
∑

I⊂V
|I|=k

∑

v∈I
w∈V −I

ΦA(−→vw, I)

{Rearranging sums, setting J = I + {w}.}

= k − 1 +

(

n

k

)−1
∑

J⊂V
|J|=k+1

∑

v,w∈J
v 6=w

ΦA(−→vw, J − {w})

{By Lemma 3.8.}

≥ k − 1 +

(

n

k

)−1(
n

k + 1

)

(k − 1)

=
k − 1

k + 1
(n + 1)

ut



Using Theorem 3.6, we now derive the following result.

Theorem 3.10. The maximal expected cost of any randomised linear mutual
search algorithm over n nodes on some instance of size k is at least

k − 1

k + 1
(n + 1) .

Proof. We first compute the expected cost of a randomised linear algorithm R on
a random instance of size k of the mutual search problem over n nodes. Because
the random coin flips used by R are independent of the choice of the instance
we can first condition on the contents of the random tape. This fixes R, in effect
making it a deterministic linear algorithm A. The expected cost over a random
instance is now given by Lemma 3.9 to be at least

E[CA(I)] ≥
k − 1

k + 1
(n + 1) .

As this is the expected cost of R on a random instance, there must be an instance
for which the expected cost is at least this high. ut

4 Unrestricted algorithms

In this section we investigate the power of more adaptive algorithms whose call
patterns depend heavily on the presence or absence of earlier successful calls.
We show that these algorithms perform better than the lower bound for linear
algorithms, given either a shared coin or a private coin.

4.1 Shared coins

First we restrict our attention to algorithms deploying a shared random coin.
This shared coin can be used to perform a global relabelling of nodes, as ex-
plained in section 3.1.

The following algorithm uses

k − 1 +

(

k − 1

k + 1
−

k − 2

n

)

(n − k)

expected calls in the worst case. In this algorithm, all agents call node 0, unless
node 0 does not contain an agent, in which case the first agent that discov-
ers this calls all other nodes until all remaining agents are found (similar to
Algorithm 3.1).



Algorithm 4.1. Globally relabel the nodes using the shared random coin. Agents
call other nodes depending on the pulse number (starting with pulse 0) as follows.

– An agent on node 0 (after relabelling) does not make any calls.
– An agent on node i > 0 (after relabelling) is quiet upto pulse 2i − 1.

• If it did not receive any calls at earlier pulses, on pulse 2i − 1 it calls
node 0.
∗ If this call is successful, it makes no more calls.
∗ Otherwise, at pulse 2i, 2i + 1, . . . it calls nodes i + 1, i + 2, . . . until it

has contacted all remaining k − 1 agents.
• If an agent on node i > 0 receives a call before pulse 2i − 1, it remains

quiet for all future pulses.

Theorem 4.2. Algorithm 4.1 is a mutual search algorithm for k agents on n

nodes, making at most k − 1 +
(

k−1
k+1

− k−2
n

)

(n − k) expected calls in the worst
case.

Proof. We split the proof into two cases.

an agent at node 0: This case occurs with probability k/n. Here, all remain-
ing k − 1 agents call node 0, so that k − 1 calls are made in total, and all
agents are found.

no agent at node 0: This case occurs with probability (n − k)/n. The first
agent at node i > 0 that discovers this case in phase 2i − 1, will call all
remaining agents at nodes j > i. In fact, in this case the k agents run
algorithm 3.1 on n − 1 nodes. Hence the worst case expected cost is given
by Theorem 3.2 as k−1

k+1
n. We have to add 1 for the extra call to node 0 to

arrive at the total cost in this case.

The worst case expected cost is therefore given by

k

n
(k − 1) +

n − k

n

(

1 +
k − 1

k + 1
n

)

= k − 1 +

(

k − 1

k + 1
−

k − 2

n

)

(n − k)

This completes the proof. ut

Note that the bound of Sect. 3 can be rewritten to k − 1 + k−1
k+1

(n − k). Al-

gorithm 4.1 improves this bound by k−2
n

(n − k).

4.2 Private coins

Using private coins the agents have only limited possibilities to counter bad
node assignments made by the adversary. Global relabelling is not possible, for
instance, because the agents cannot exchange the outcome of their private coin
tosses.

We consider the special case of k = n − 1, where all nodes except one are
occupied by an agent. Here, the following algorithm uses

k − 1 +
1

2

expected calls in the worst case.



Algorithm 4.3. This algorithm runs as follows.

round 1: If there is an agent at node 0, it either calls node 1 or node 2, each
with probability 1/2.

round 2: If the previous call was unsuccessful, the other node is called.
round 3: If there is an agent at node 2, which did not receive a call from node

0, it calls node 1.
round 4: If there is an agent at node 1, which did not receive any calls (either

from node 0 or node 2), it calls node 2.
round 2 + i, 3 ≤ i ≤ n − 1: If there is an agent at node 1, and node 1 did not

receive a call from node 0 and was called by node 2 it calls node i at round
i.

round n − 1 + j, 3 ≤ j ≤ n − 1: If there is an agent at node j, and this node
did not receive a call from node 1, then it calls node 0.

Theorem 4.4. Algorithm 4.3 is a mutual search algorithm for k = n−1 agents
on n nodes, making k − 1 + 1

2
expected calls in the worst case.

Proof. By case analysis, using the fact that all but one node contain an agent.

no agent at node i > 2: The agent at node 0 either calls node 1 (and then
node 2 calls node 1 at round 3) or node 2 (and then node 1 calls node 2 at
round 4). No calls are made at round 2 + i for 3 ≤ i ≤ n − 1, and all agents
on nodes 3 ≤ j ≤ n − 1 call node 0 at round n − 1 + j. One of these nodes
is not occupied by an agent. In this case, k − 1 calls are made in total.

no agent at node 0: The agent at node 2 calls node 1 at round 3. Hence the
agent at node 1 calls the agents at node i for 3 ≤ i ≤ n − 1 at round 2 + i.
Again, k − 1 calls are made in total.

no agent at node 1: With probability 1/2, the agent at node 0 calls node 2. No
other calls are made in round 2, . . . , n+1. All agents on nodes 3 ≤ j ≤ n−1
call node 0 at round n − 1 + j. Again k − 1 calls are made in total.
With probability 1/2, the agent at node 0 calls node 1. Because this call
is unsuccessful, it also calls node 2 at round 2. No other calls are made in
round 3, . . . , n + 1. All agents on nodes 3 ≤ j ≤ n − 1 call node 0 at round
n − 1 + j. Now k calls are made in total.

no agent at node 2: Similar to the previous case.

The worst case occurs if there is no agent at node 1 or node 2. In either case the
expected number of calls made equals 1

2
k + 1

2
(k−1) = k−1+ 1

2
. This completes

the proof. ut

4.3 Lower bound

Using the results of Section 3.3 we now derive a lower bound of

k − 1 +
n − k

k + 1

expected calls in the worst case for arbitrary randomised mutual search al-
gorithms. We use the same notational conventions and definitions as used in
that section.



Lemma 4.5. Let J be an arbitrary set of k+1 ≤ n nodes. Let A be an arbitrary
deterministic mutual search algorithm Then

∑

v,w∈J
v 6=w

ΦA(−→vw, J − {w}) ≥ 1 . (9)

Proof. Run A on instance J . Because A is a mutual search algorithm, it will
make at least one successful call. Let −→vw be the first successful call. Now remove
w from J , and run A on J −{w}. As discussed in Section 2, the call pattern of a
node depends on its initial state and all calls made so far. For u 6= w, the initial
state does not change. Moreover, any calls before the call from v to w must, by
assumption, be unsuccessful. Removing w does not influence the result of any of
these unsuccessful call (they do not involve w). Removing w only removes any
unsuccessful calls made by w from the call pattern. They also have no effect on
the call patterns of the other nodes. Hence all u 6= w make the same calls as
before upto the call to w. Hence v calls w, which is now unsuccessful. ut

Theorem 4.6. The maximal expected cost of any randomised mutual search
algorithm over n nodes on some instance of size k is at least

k − 1 +
n − k

k + 1

Proof. Using the same steps of the proof of Lemma 3.9 and using Lemma 4.5
we get

E[CA(I)] = k − 1 +

(

n

k

)−1
∑

J⊂V
|J|=k+1

∑

v,w∈J
v 6=w

ΦA(−→vw, J − {w})

{By Lemma 4.5.}

≥ k − 1 +

(

n

k

)−1(
n

k + 1

)

= k − 1 +
n − k

k + 1
.

The theorem follows from this fact by the same reasoning as used in the proof
of Theorem 3.10. ut

5 Further research

We have investigated the mutual search problem in the randomised case with
k > 2 agents. The main questions remaining are the following.

First of all, we would like to derive efficient adaptive algorithms for an ar-
bitrary number of agents in the private coins model. Moreover, we would like to
close the gap between the lower bound and the upper bound in the shared coins
model for arbitrary, non-linear, mutual search algorithms.



Secondly, the question is how changes to the model (different graphs, non-
anonymous agents, independent agents, etc.) affect the cost of mutual search.

Finally, time constraints may have an adverse effect on the cost of a mutual
search algorithm. If a synchronous mutual search algorithm is required to ter-
minate within time t, with full knowledge of the distribution of the agents, the
algorithm may have to make more than one call per time slot, and may not be
able to fully exploit the “silence is information” paradigm.
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and Vitányi, P. Mutual search. J. ACM 46, 4 (1999), 517–536.
[Fel57] Feller, W. An Introduction to Probability Theory and Its Applications,

2nd ed. Wiley & Sons, New York, 1957.
[GHS83] Gallager, R. G., Humblet, P. A., and Spira, P. M. A distributed

algorithm for minimum-weight spanning trees. ACM Trans. Prog. Lang.

& Syst. 5, 1 (1983), 66–77.
[LPS99] Lotker, Z., and Patt-Shamir, B. A note on randomized mutual search.

IPL 71, 5–6 (1999), 187–192.
[Yao77] Yao, A. Probabilistic computations: toward a unified measure of complex-

ity. In 18th FOCS (Long Beach, CA, USA, 1977), IEEE Comp. Soc. Press,
pp. 222–227.


