
Inferring OpenVPN State Machines
Using Protocol State Fuzzing

Lesly-Ann Daniel
University of Rennes 1 - ENS Rennes
Email: lesly-ann.daniel@ens-rennes.fr

Joeri de Ruiter
Radboud University

Email: joeri@cs.ru.nl

Erik Poll
Radboud University

Email: erikpoll@cs.ru.nl

Abstract—The reliability of a security protocol is of the utmost
importance but can easily be compromised by a vulnerability in
the implementation. A crucial aspect of an implementation is the
protocol’s state machine. The state machine of an implementation
can be inferred by black box testing using regular inference.
These inferred state machines provide a good insight into imple-
mentations and can be used to detect any spurious behavior. We
apply this technique to different implementations of OpenVPN:
the standard OpenVPN and the OpenVPN-NL implementations.
Although OpenVPN is a widely used TLS-based VPN solution,
there is no official specification of the protocol, which makes it a
particularly interesting target to analyze. We infer state machines
of the server-side implementation and focus on particular phases
of the protocol. Finally we analyze those state machines, show
that they can reveal a lot of information about the implementation
which is missing from the documentation, and discuss the
possibility to include state machines in a formal specification.

I. INTRODUCTION

Virtual Private Network (VPN) solutions are widely used to
establish secure data transmissions over insecure channels (e.g.
a public Internet connection). This technology can be used by
companies to connect geographically separated offices or to
allow remote workers to access the company network. VPNs
use a tunneling mechanism to provide an additional layer to
ensure confidentiality, authentication and integrity independent
of the underlying protocol. The security of the protocols used
to achieve this can easily be compromised by a vulnerability
in the implementation.

To automatically detect some of these vulnerabilities we
can use formal methods. Regular inference, or protocol state
fuzzing, is a technique to infer a state machine from the
implementation of a protocol [1]. The inferred state machine
provides a useful insight into the choices and errors made in
the implementation. It should allow all the transitions defined
by the grammar of the protocol and react appropriately to
unexpected messages, by ignoring the message or dropping
the connection. The inferred state machine can be analyzed
to detect any logical flaws and to check compliance of the
implementation with its specification. It can also reveal su-
perfluous states and transitions which should be removed as a
precaution. Finally, it gives a good overview of the sequence
of messages (which is often not well specified), and can be
used to automatically define a formal specification of the
protocol [2].

Ethernet IPv4 UDP VPN IPv4
Application

Data
TCP

Fig. 1. Example of OpenVPN tunneling IP packets over an UDP channel. The
gray message benefits from the security properties (confidentiality, integrity,
authentication) provided by the enclosing OpenVPN protocol.

This paper focuses on the OpenVPN protocol [3], which
is based on TLS. Even though it is a widely used VPN
solution, it has not been subject to a lot of research and
no formal specification exists of the protocol. Indeed, there
is no documentation about the sequence of messages leading
to a successful connection nor about the correct behavior in
response to receiving unexpected messages - even though this
is essential for a security protocol.

We use LearnLib [4] to infer state machines of two different
OpenVPN servers: the standard OpenVPN implementation
based on OpenSSL, and the OpenVPN-NL implementation
based on PolarSSL. For each of them we infer several states
machines that focus on particular phases of the protocol. We
manually analyze those state machines and show that they
show a lot of information about the implementation that cannot
be found in any documentation. Finally, we discuss how state
machines can be used to define a formal specification of the
protocol.

The OpenVPN protocol is introduced in Section II and pro-
tocol state fuzzing in Section III. We present our experimental
setup in Section IV and the results of our analysis in Section V.
Finally, the related work is discussed in Section VI and we
conclude in Section VII.

II. THE OPENVPN PROTOCOL

OpenVPN provides tunneling to provide confidentiality,
authentication and integrity for the data transmitted. The entire
message to be transmitted (IP packet or Ethernet frame, in-
cluding its meta-data like sender and recipient) is encapsulated
within an OpenVPN message, as illustrated in Figure 1. For
an in-depth presentation of OpenVPN, see [3], the doxygen-
generated documentation [5], or the security overview on the
OpenVPN website [6].



OpenVPN offers a large choice of security options. It is
based on the OpenSSL library, which is used for its TLS
session negotiation, its encryption and authentication and its
random number generation primitives. Two methods of key
exchange are provided: a pre-shared key and a TLS-based
mechanism. The rest of the paper will focus on the TLS
mode which is more complex and involves key exchange
and re-keying, contrary to the pre-shared key mode which is
more straightforward. In both methods, each peer possesses
four independent and unidirectional session-keys: HMAC-
send, HMAC-receive, encrypt and decrypt, used to encrypt
and MAC the data messages.

The TLS mode is based on TLS, which has been subject
to a lot of research [7, 8, 9, 10, 11, 12, 13, 14, 15]. A TLS
session with bidirectional authentication is negotiated between
the client and the server (i.e. both parties must present their
own certificate) and is used to securely establish the session-
keys. There are two methods of session keys establishment:
in key-method 1, each peer generates their own cipher and
HMAC keys and sends them to the other; while in key-method
2, the keys are computed by mixing random material from
both parties using the TLS pseudo-random function (PRF).
Once both peers have received the session keys, the data
tunneling can start: the actual data (IP packet or Ethernet
frame) to transmit are encrypted, MAC-ed and encapsulated
within a DATA message. Figure 2 shows the normal sequence
of messages leading to a successful connection.

serverclient

Client Hard Reset (or CHRv1)

Server Hard Reset (or SHRv1)

Tls:ClientHello

Tls:ServerHello
Tls:Certificate

Tls:CertificateRequest
Tls:ServerHelloDone

Tls:Certificate
Tls:ClientKeyExchange

Tls:CertificateVerify
Tls:ChangeCipherSpec

+{Tls:Finished}+

Tls:ChangeCipherSpec
+{Tls:Finished}+

+{Tls:ApplicationData(Key Negotiation)}+

+{Tls:ApplicationData(Key Negotiation)}+

*{Data}*

*{Data}*

Fig. 2. A regular OpenVPN session using TLS mode, without DH cipher
suite. A message secured with the TLS keys is denoted as +{msg}+, and
a message secured with the VPN session-keys is denoted as *{msg}*. All
the messages are acknowledged via the OpenVPN reliability layer, except the
DATA messages. The ACK messages are omitted.

The TLS session negotiation and the data tunneling are
processed over independent channels: the control channel and
the data channel, with their own packet identifiers and keys.

s0 s1 s2

A/A
B/C

A/C
B/C

A/B
B/A

Fig. 3. A Mealy machine with 3 states

OpenVPN multiplexes the control channel and data channel
over a single network stream which is not necessarily reliable.
OpenVPN actually prefers to use UDP transport instead of
TCP, due to the TCP reliability layer collisions when tunneling
TCP over TCP1. Because TLS is designed to operate over
a reliable channel, the control channel is provided with an
extra reliability layer, referred to as the OpenVPN’s reliability
layer, which consists of a simple acknowledgement mechanism
active in both UDP or TCP tunneling. Note that the data
channel can still benefit from a reliability layer provided by
the encapsulated protocol, e.g. tunneling of a TCP session will
benefit from reliability data transfer offered by TCP.

The OpenVPN implementation also offers the –tls-auth op-
tion to authenticate packets from the control channel by adding
an HMAC to the control messages. This mechanism allows
OpenVPN to quickly throw away unauthenticated packets,
without wasting resources and thus protecting against DoS
attacks, and it reduces the attack surface for finding exploitable
software bugs for any Man-in-the-Middle attacker.

III. PROTOCOL STATE FUZZING

Protocol state fuzzing is defined in [7] as a technique
that uses regular inference (a.k.a. automata learning or state
machine inference) to infer a state machine from a protocol
implementation. Regular inference uses black-box fuzzing on
the order of well-formed messages to automatically infer a
state machine which models the implementation of a system,
based on its external behavior. In this paper, those state
machines are represented as Mealy machines.

A. Mealy Machines

A Mealy machine is a finite state machine with output, in
which a transition, based on the current state and input, will
result in a change of state and produce an output. The Mealy
machines we use are deterministic, i.e. for each input and
current state, only one transition is possible. Figure 3 shows
a graphical representation of a simple Mealy machine. The
transition from the state s1 to the state s2 labeled B/C means
that if the state machine is in state s1 and receives an input
B, then it will switch to state s2 and produce the output C.

We will use Mealy machines to model the behavior of
the OpenVPN server. They describe how the server reacts in
response to input messages: which output it produces and how
its state is affected. The next part discusses how state machines
can be automatically inferred.

1http://sites.inka.de/sites/bigred/devel/tcp-tcp.html



B. Regular Inference

The state machine of the OpenVPN server is inferred using
regular inference, a technique based on black-box fuzzing
where well-formed packets are sent to the server and the
output is used to infer a state machine. The regular inference
primitives are provided by the LearnLib library [4]. The
system which is analyzed, namely the OpenVPN server, is
referred to as the system under learning (SUL) and its state
machine is denoted by M .

The regular inference involves two actors: a learner (the
LearnLib library) and a SUL (the OpenVPN server). The
learner has no initial knowledge about M but is provided with
an input alphabet upon which it will build queries and ask them
to the SUL. A fundamental property that must be ensured is
the independence of subsequent queries. Therefore, between
each query, the SUL must be reset to its initial state. In our
case, it is effectively done by killing the OpenVPN server
process and starting a new one.

The learner is composed of two parts: the learning algo-
rithm and the equivalence algorithm. The learning algorithm
will keep sending membership queries (i.e. what is the re-
sponse to a sequence of input symbols?) to the SUL until it
comes up with a strong hypothesis. Then the hypothesized
state machine H is passed to the equivalence algorithm which
will answer an equivalence query (i.e. is the hypothesized
state machine H equivalent to M?). As we cannot know for
sure whether a hypothesis is equivalent to the implemented
state machine, we need to approximate this check. If H is
deemed equivalent to M , then H is returned as the model of
the SUL. Else, the equivalence algorithm returns a counterex-
ample which is used to refine the hypothesis and the learning
algorithm is resumed until it finds a new strong hypothesis.
The learning algorithm is resumed until the hypothesized state
machine H is deemed equivalent to M .

The learning algorithm used in this paper is Niese’s modi-
fied version of Angluin’s L* algorithm which can be used to
infer Mealy machines [1, 16]. The equivalence algorithm is
a modified version of the W-method [17], refined to cut off
entire search branches based on the fact that once a connection
is closed by the server it will remain closed [7]. Therefore, we
stop building queries over prefixes that end up with a closed
connection. Finally the test harness (detailed in Section IV-A)
controls the communication between the learner and the SUL.

IV. SETUP

The servers we test run on a VMware virtual machine hosted
on the same computer as the learner and can be started or
reset via SSH. The L* learning algorithm and the W-method
equivalence algorithm are both provided by LearnLib.

A. Test Harness

The main challenge to infer a correct state machine is
to prepare the application specific learning setup, i.e. the
test-harness. This includes determining a suitable abstraction
of input and output messages, and finding ways to manage
concrete runtime data that influences the behavior of the

target system [18]. Consequently, the test harness consists of
a mapper and a monitor. The test harness implementation is
based on the previous work of de Ruiter and Poll [7] on TLS.
The source code is available at https://github.com/jderuiter/
statelearner/tree/openvpn. Note that the test harness can be
reused to analyze several versions of the protocol as long as
the language of messages has not been changed.

The learner is provided with an abstract input alphabet upon
which it builds queries intended for the OpenVPN server.
However, the OpenVPN server expects actual messages and
not the abstract symbols from the learner’s input alphabet.
Similarly, the learner will expect the responses from the server
as abstract symbols from its output alphabet. Therefore, the
test harness contains a mapper which translates the abstract
symbols to the actual OpenVPN packets, and vice versa. Note
that the level of abstraction will affect the final learned model:
a compromise must been made between the precision of the
model and the learning complexity.

The monitor is in charge of building correct system inputs,
based on concrete runtime data that influence the behavior
of the system; basically, it consists of a stateless OpenVPN
client. For example, it sends the messages through the network,
processes the responses to recover important information
(e.g. session ids and keys), handles the acknowledgement
process, and implements the security primitives in the way
expected by the server (e.g. valid authentication, encryption
and signatures). Managing this runtime data requires a deep
understanding of OpenVPN to make decisions concerning the
semantics of the abstract input symbols, which will affect the
final state machine.

Since there is no formal specification of the OpenVPN
protocol, low level information was not straightforward to get.
We mainly relied on Wireshark traces, the doxygen-generated
documentation [5], and the security overview [6]. When more
in-depth analysis was needed, we used the OpenVPN source
code and the server logs with maximum verbose output.

B. Nondeterminism Issues

That the SUL is deterministic is of paramount importance
since LearnLib can only learn state machines of deterministic
systems. Nondeterministic behavior of the SUL can produce
a wrong model, or cause unexpected behavior of the learner,
incl. non-termination. Unfortunately, the OpenVPN server has
some nondeterministic behaviour that we have to hide to the
learner to be able to infer a state-machine. The less frequent
the nondeterministic behavior is, the harder it is to catch,
which is very insidious because long learning phases can turn
out to be unsuccessful because of one wrong query. When
nondeterminism is suspected (e.g. because the learner does non
terminate), we manually analyze the query cache to find the
query with a nondeterministic answer. The defective query can
be analyzed further to track down the cause of nondeterminism
through the log file of the server and the Wireshark traces.
When the source of nondeterminism is identified, we design
a “trick” to work around it.



There are two main causes of nondeterminism. First, the
UDP connection between the client and the server is not
reliable, so packet loss may be a cause of nondeterminism.
We did not expect this kind of behaviour, since our server
is simply running on a virtual machine on the same com-
puter as the client. However, with some configurations of
the VM (e.g. when using NAT connection, or during time-
synchronization of the VM), we did experience that sometimes
the connection dropped, which caused the learning process
to fail. The solution is to adapt the configuration of the VM
to circumvent these issues (e.g. turn to host-only connection,
disable automatic time synchronization).

Second, there are multiple timeouts and delays on the server
side, e.g. the reset time of the server, the time to process the
messages, and the TPC and UDP timeouts. The response to
a query may vary depending on those timing-related events,
which is seen as nondeterminism by the learner. The solutions
we adopted to work around this timing-related nondeterminism
often implied longer sleeping-times or timeouts on the client
side. This has a big impact on the learning time and constituted
the main bottleneck of the learning process. Choosing the
appropriate timeouts and sleeping-times is a challenging issue:
under-approximating them may cause nondeterminism in the
learning process and make it fail, but setting them too long can
significantly slow down the learning process. For example, for
set the UDP and TCP timeouts we started with low values and
increased them until there were no more packet losses (100
ms for UDP and 800 ms for TCP).

In addition, in order to prevent a wrong counterexample
to be added to the hypothesis after an equivalence query, we
modified the equivalence algorithm to detect nondeterminism.
Each time a counter-example is found by the equivalence
algorithm, the query is processed again to check whether the
outputs match. If both outputs are the same, we assume that the
output is correct and that a counterexample has been found,
otherwise, an exception is raised for nondeterminism. This
simple modification could be added to LearnLib as an option to
detect nondeterminism. The message replay was good enough
in our situation because the probability of nondeterminism is
very low (less than 1/100); however, it may not work for higher
probabilities of nondeterminism. In general, nondeterminism
can either be caused by a nondeterministic target, which
therefore it cannot be modeled as a Mealy machine so it is
out of the scope of our approach, or an unreliable environment
(e.g. packet losses) which we can try to resolve by making
the environment more reliable (e.g. increasing the timeouts or
replaying the packets the appropriate number of time given
the probability of packet loss).

C. Input Alphabet for Learning

In order to keep the learning complexity low, we only
include messages that would be accepted given the server
configuration and we abstract away the acknowledgement
mechanism. So, the SERVERHARDRESET message and the mes-
sages for key-method 2 which result in a closed connection
are not included. We also only include TLS messages required

to establish a successful OpenVPN session. An OpenVPN
session is considered successful when the initialization se-
quence is complete and the data tunneling can start. To detect
a successful data exchange, we use the OpenVPN tunnel to
send a ping request to the server. If the exchange is successful
the server will send back a ping response through the tunnel.

Depending on the input alphabet and on the monitoring
part, the inferred state machine can change significantly. The
learner was run with several input alphabets providing different
levels of abstraction, to infer various state machines and
highlight different behaviors of the server (which are detailed
in Section V). This also permits to lower the complexity of
the learning process by reducing the size of the input alphabet
and the final number of states in the model.

V. RESULTS

We analyzed two different implementations of OpenVPN:
OPENVPN 2.3.10 using OPENSSL 1.0.2G, referred to as
OpenVPN, and OpenVPN-NL2 based on OPENVPN 2.3.9
using POLARSSL 1.2.19, referred to as OpenVPN-NL.
OpenVPN-NL is a stripped and hardened version of Open-
VPN, intended for Dutch government use, which disallows
insecure configurations. The server is configured to use key-
method 1 and not the tls-auth option. Both UDP and TCP
modes were analyzed and turned out to behave differently.

In order to keep the learning complexity low, we chose to
split the analysis into several parts. Each part focuses on a
particular phase of the protocol. The first part focuses on the
OpenVPN session initialization, the second part on the TLS
handshake and the last part on the re-keying process.

For each state machine, the sequence of messages leading
to a successful OpenVPN tunnel, the happy-flow, is indicated
with bold edges. The state ’0’ refers to the initial state, the
state ’ISC’ (Initialization Sequence Complete) is the state from
which the data tunneling can actually start and the state ’X’
refers to a closed connection.

A. The OpenVPN Session Initialization

From the documentation3 and server logs, we can see that
the OpenVPN implementation stores its OpenVPN sessions in
three session slots. The first slot contains the active session
(i.e. the session which initialization sequence is complete
and which can process DATA messages), the second slot
contains the untrusted session being negotiated, and the last
slot contains the old session. Note that those session slots are
an implementation choice and not a fundamental aspect of
the OpenVPN protocol. Each OpenVPN session is initiated
with a CLIENTHARDRESET message (CHRV1) that has a unique
session-id. However, the expected impact of the CHRV1 on the
server is not specified in the documentation. Therefore we tried
to highlight it by building a state machine over three input
symbols: CHRV1 initiates a new session, TLS:FULLSESSION

2https://openvpn.fox-it.com/
3See https://build.openvpn.net/doxygen/html/group control processor.

html#details for more details on the tls session structures.



treats the entire TLS-based key exchange as one atomic step,
and DATAPINGREQ sends a ping request through the tunnel.

0 DataPingReq/Empty

1

CHRv1/SHRv1

X

Tls:FullSession/
ConnectionClosed

DataPingReq/Empty

2

CHRv1/Ack

ISC

Tls:FullSession/Succeed

Tls:FullSession/
ConnectionClosed

CHRv1/Ack
DataPingReq/Empty

Tls:FullSession/
ConnectionClosed

CHRv1/Ack
DataPingReq/DataPingRep

Fig. 4. State machine of an OpenVPN or OpenVPN-NL server running in
TCP mode.

0 Other/Empty

1

CHRv1/SHRv1

DataPingReq/Empty

2

CHRv1/SHRv1

ISC

Tls:FullSession/SucceedCHRv1/Ack
DataPingReq/Empty

Tls:FullSession/Succeed

DataPingReq/DataPingRep

3

CHRv1/SHRv1

X

Tls:FullSession/ConnectionClosedTls:FullSession/Succeed

CHRv1/Ack
DataPingReq/DataPingRep

Fig. 5. State machine of an OpenVPN or OpenVPN-NL server running in
UDP mode.

The state machines of the OpenVPN server and the
OpenVPN-NL server are the same, which makes sense since
the OpenVPN-NL implementation is based on the OpenVPN
implementation. The TCP and the UDP modes differ in the
way they handle the sessions, which is not specified in the
documentation and is quite surprising, even though it does
not seem insecure.

Starting with a TLS message in TCP mode results in a
closed connection (0 → X in Figure 4). Conversely, these
messages are ignored in UDP mode (0 → 0 in Fig. 5) since
all UDP messages with an unknown session-id are ignored by
the server.

In UDP mode, the session-keys can be renegotiated by
sending a new CHRV1, (the dashed loop in Figure 5). This
is not possible in TCP mode since only the first CHRV1 can
result in a successful connection, whereas the others eventually
result in a closed connection, as can be seen in Figure 4. We
found an explanation for this difference: in UDP mode the
server cannot know if the connection is closed on the client
side, contrary to TCP mode. Therefore, if the client reconnects
and tries to initiate a new session by sending a new CHRV1,
the server can process the CHRV1 and the new session can be
seamlessly renegotiated.

In UDP mode, two sessions can be under negotiation at the
same time, but only if there is no active session. This can be
seen in Figure 5 from the path 0 → 1 → 2 as the first two
CHRV1 trigger a response from the server, but after reaching
the state ISC, only one CHRV1 triggers a SHRV1 (i.e. path
ISC → 3). This is because when the active session slot is
empty, it is used to store the first untrusted session (the others
are stored in the second slot). Figure 5 also shows that in UDP
mode, a session initiated with a CHRV1 message can succeed
without triggering a SHRV1 message. For instance following
the path 0 → 1 → 2 → 2 → ISC with the sequence of mes-
sages CHRV1/SHRV1 → CHRV1/SHRV1 → CHRV1/EMPTY →
TLS:FULLSESSION/SUCCEED, the active session-id will be the
one introduced by the third CHRV1 message which triggers
no response from the server. This behavior, which is quite
confusing but not insecure, is based on the fact that the server
only respond with a SHRV1 when filling a new session slot.
The first and second CHRV1 fill the first and second slots but
the third CHRV1 just overrides the second session in the second
slot. These differences also explain why in UDP mode two
paths can lead to a successful session (i.e. 0 → 1 → 2 → ISC
and 0 → 1 → ISC in Figure 5), while in TCP mode there is
only one path (0 → 1 → ISC in Figure 4).

Finally from the server logs we observe that in TCP mode,
the structure containing the second session is allocated when
receiving the CHRV1 but the corresponding SHRV1 is never
sent and the session is stuck in the S PRE START state4.
However, the subsequent TLS messages are processed by the
server though the responses to the TLS:CLIENTHELLOALL are
not forwarded to the client. Finally if the TLS handshake is
continued, the TLS:CERTIFICATEVERIFY triggers an error for a
bad signature and the connection is dropped by the server.

B. The TLS Handshake

Next we focus on analyzing the details of the TLS sessions
used to set up an OpenVPN connection. The whole TLS
session negotiation was previously abstracted into a single
TLS:FULLSESSION step. To investigate it in more detail, it is
split into several steps corresponding to the different TLS
messages: TLS:CLIENTHELLOALL, TLS:CLIENTCERTIFICATE,
TLS:CLIENTKEYEXCHANGE, TLS:CLIENTCERTIFICATEVERIFY,
TLS:CHANGECIPHERSPEC, TLS:FINISHED, and KEYNEG1.

4See https://build.openvpn.net/doxygen/html/group control processor.
html for more details on session states



In order to make the state machine simpler we change
CHRV1 to WCHRV1 that focuses on only one session by
keeping the previous session-id and TLS session parameters.
Resetting the packet-id in WCHRV1 (as done in CHRV1)
introduces an issue w.r.t. the acknowledgement mechanism
because the CONTROL messages with a known packet-id are
considered to be replayed packets by the server. Thus, the
responses of the server after WCHRV1 would depend on the
number of control messages previously sent and the server
could no longer be modeled as a finite Mealy machine. For this
reason, WCHRV1 does not reset the packet-id, unlike CHRV1.

Figure 6 shows the resulting state machines for OpenVPN
and OpenVPN-NL. Most messages resulting in a closed con-
nection have been removed for readability and the sequence of
messages from TLS:CLIENTCERTIFICATE to TLS:FINISHED has
been condensed into the TlsHsk state.

0 DataPingReq/Empty

1

wCHRv1/SHRv1

wCHRv1/Ack
DataPingReq/Empty

4

TlsChangeCipherSpec/Ack

2

Tls:ClientHelloAll/
Tls:ServerHelloTLSv12

Certificate
ServerKeyExchange
CertificateRequest
ServerHelloDone

wCHRv1/Ack
DataPingReq/Empty

X

wCHRv1/Ack
DataPingReq/Empty

TlsHsk

Tls:FullHandshake/Ack

wCHRv1/Ack
DataPingReq/Empty

ISC

KeyNeg1/Tls:ApplicationData

Tls:ChangeCipherSpec/
ConnectionClosed

wCHRv1/Ack
Other/Tls:Alert1.100

DataPingReq/DataPingRep

3

KeyNeg1/Ack

Tls:ChangeCipherSpec/
ConnectionClosed

DataPingReq/ConnectionClosed

wCHRv1/Ack
Other/Tls:Alert1.100

KeyNeg1/Ack

Fig. 6. State machine of an OpenVPN server. The dotted edges correspond
to a transition specific to OpenVPN and the underlined messages are specific
to OpenVPN-NL

The differences between the OpenVPN and OpenVPN-NL
state machines are only due to the different TLS implemen-
tations and cipher suites they use. As expected, the OpenSSL
state machine included in the OpenVPN state machine and the
PolarSSL state machine included in the OpenVPN-NL state
machine are similar to those inferred in [7]. For example,
the OpenSSL implementation does not return an error when a
CHANGECIPHERSPEC is sent before a CLIENTHELLOALL, hence
the dead-end state 4 where the TLS session can no longer

succeed, which is specific to OpenVPN, as OpenVPN-NL
simply closes the connectionin this case.

The OpenVPN-NL implementation is more permissive in
some other situations. When the TLS handshake is complete
(in states ISC and 3) and an extra TLS handshake message
is sent, OpenVPN-NL returns an ALERT (see the underlined
labels), whereas OpenVPN closes the connection.

OpenVPN uses TLS RSA WITH AES 128 CBC SHA as
its cipher suite, whereas OpenVPN-NL uses the cipher suite
TLS DHE RSA WITH AES 256 CBC SHA. This differ-
ence explains the extra SERVERKEYEXCHANGE in the
OpenVPN-NL state machine which is only sent when using
Diffie-Hellman (DH) key exchange.

Both implementations allow the client to send several
KEYNEG1 messages over the TLS session, but only the first
one is processed and the others are ignored. In our test
harness, we made the choice to generate and send fresh
session-keys (used to encrypt and MAC the DATA messages)
when sending a new KEYNEG1 message. This results in the
extra state 3 which highlights the fact that when the server
receives a DATA message encrypted and MAC-ed with the
wrong keys, it will drop the connection resulting in the
DATAPINGREP/CONNECTIONCLOSED transition from state 3 to
X.

Finally there is a difference in TCP and UDP modes (Fig-
ure 7) because the acknowledgement process is not respected
in TCP mode (which is not specified in the documentation).
Starting the communication with a CONTROL message different
from WCHR1 results in the dead-end states 2 and 3 because in
state 2, the server receives a WCHR1 with a packet-id n > 0
and waits for the messages with a packet-id lower than n
in state 3. Therefore, the subsequent TLS messages are not
processed.

0 DataPingReq/Empty

1

wCHRv1/SHRv1

2

Other/Empty

...

...

3 DataPingReq/Empty
Other/Ack

wCHRv1/SHRv1

Other/Empty

Fig. 7. Subset of the state machine of an OpenVPN or OpenVPN-NL server,
focusing on the particularity of the UDP mode. State 1 and its subsequent
states are identical to the TCP version.

C. The Key Renegotiation Mechanism

In OpenVPN, renegotiation of the session keys can be
triggered automatically with a SOFTRESET message after
a certain number of bytes, packets or seconds by either
the client or the server. To focus on the effect of this
SOFTRESET message, we infer a state machine using the
following input symbols: WCHRV1, TLS:CLIENTHELLOALL,



TLS:FULLHANDSHAKE (which contains the TLS messages from
TLS:CLIENTKEYEXCHANGE to TLS:FINISHED), KEYNEG1,
DATAPINGREQ and SOFTRESET. The inferred state machines
for OpenVPN and OpenVPN-NL are similar, except for the
responses containing TLS alerts and the extra SERVERKEYEX-
CHANGE message mentioned in Section V-B. As expected,
Figure 8 shows that the key renegotiation mechanism can only
be triggered after the OpenVPN session is initiated, i.e. in
states ISC and 4. The SOFTRESET messages sent before the ISC
state end up in a closed connection which is a safe behavior
to adopt in a security protocol.

0 DataPingReq/Empty

1

wCHRv1/SHRv1

wCHRv1/Ack
DataPingReq/Empty

2

Tls:ClientHelloAll/
Tls:ServerHelloTLSv12

Certificate
ServerKeyExchange
CertificateRequest
ServerHelloDone

wCHRv1/Ack
DataPingReq/Empty

3

Tls:FullHandshake/Tls:ChangeCipherSpecFinished

wCHRv1/Ack
Tls:ClientHelloAll/Tls:Alert1.100

DataPingReq/Empty

ISC

KeyNeg1/Tls:ApplicationData

SoftReset/SoftReset

wCHRv1/Ack
Tls:ClientHelloAll/Tls:Alert1.100

DataPingReq/DataPingRep

4

KeyNeg1/Ack

SoftReset/SoftReset

wCHRv1/Ack
Tls:ClientHelloAll/Tls:Alert1.100

KeyNeg1/Ack

Fig. 8. State machine of an OpenVPN-NL server running in TCP mode,
highlighting the key renegotiation mechanism. The dashed labels show the
successful soft reset messages. Messages resulting in a closed connection
have been removed for readability.

After a successful SOFTRESET message, the state machine
goes to state 1 and the DATA messages are no longer processed
by the server (in states 1, 2 and 3 the DATA messages
are ignored). This is the result of a choice we made in
the test harness. The key id that identifies the session-keys
of a particular DATA message has been incremented by the
SOFTRESET but the second pair of keys has not been negotiated
yet. The server will ignore the subsequent DATA messages with
the wrong key-id and, as a result, the state machine is simpler
since a successful SOFTRESET results in a transition to state
1 instead of creating some new state where a DATA message
using the old session-keys would trigger a response from the
server.

The UDP mode is different from the TCP mode and is a
good example of the limitations of LearnLib. When the active
session-keys are renegotiated via a SOFTRESET, if initialization
sequence fails then the active session state is set as ERROR
and a new session is initiated by the server which waits for
56 seconds and sends a SERVERHARDRESET. The test harness

cannot differentiate this behavior from the regular ‘no reply‘
case unless it waits for 1 min to catch the SERVERHARDRESET

each time there is no reply from the server. If the client does
not wait, the SERVERHARDRESET will eventually be caught as
a reply to another message, which introduces nondeterminism
in the learning process. In this situation the long timing-related
event cannot be suppressed and trying to infer a state machine
would be too time consuming.

D. Documentation Issues

During the construction of the test-harness we encountered
several complications that are worth noting for future work
on the OpenVPN protocol, listed here in decreasing order of
importance.

First, the sequence of messages leading to a successful
tunnel is not explicitly documented, which makes it chal-
lenging for a developer to come up with a new OpenVPN
implementation. Especially the behavior in case of erroneous
messages is not specified, even though it is essential for a
security protocol implementation to handle those error cases
properly. This sequence of messages could be added to the
documentation as a protocol state machine similar to those
presented in this paper. For instance, Figure 8 gives a good
overview of the sequence of messages that establishes an
OpenVPN session.

In the documentation the expected behavior when receiving
a HARDRESET or SOFTRESET message is not made explicit.
It is not specified how the different fields of the messages
must be handled or how the messages should affect the server
and the client. Moreover, in the implementation it is not clear
when a CLIENTHARDRESET is taken into account by the server,
since it does not always trigger a SERVERHARDRESET. Finally,
the differences between the UDP and TCP modes are not
mentioned in the documentation but are clearly visible in the
inferred state machines.

The padding algorithms used for encryption5 are not speci-
fied in the documentation and it would be helpful to have them
documented in the Data Channel Crypto Module6. Moreover,
in the Data channel key generation section7, the process used
by OpenVPN to perform key expansion in key-method 2 is
only documented by a reference to the source code. It would
be helpful to include some more documentation on the key
expansion function and the pseudorandom function.

Finally, we reported a mistake in the security overview [6]
and the documentation8 which has not been corrected yet. The
order of the fields of the KEY NEGOTIATION message in key-
method 1 do not match the implementation: the documentation
reports cipher-key length, cipher-key, HMAC-key
length and HMAC-key, but the message actually starts with
cipher-key length and HMAC-key length.

5We used the Java PKCS5PADDING for BLOWFISH/CBC and AES/CBC.
6https://build.openvpn.net/doxygen/html/group data crypto.html
7https://build.openvpn.net/doxygen/html/key generation.html
8https://build.openvpn.net/doxygen/html/network protocol.html



VI. RELATED WORK IN PROTOCOL STATE FUZZING

The idea of using regular inference to analyse implemen-
tations of security protocols dates back to at least Shu and
Lee [19]. An extensive survey of this and other techniques to
reverse engineer protocol implementations has been given by
Narayan et al. [20].

Regular inference with LearnLib has been applied to ana-
lyze implementations of EMV payments cards [21], biometric
passports [22], TLS [7, 23], and SSH [24]. Nearly always
different implementations of the same protocol turn out to
have different state machines, so regular inference can be
used to fingerprint a particular implementation. In most cases
the impact of fingerprinting is limited, but it can leak confi-
dential information; for example, a comparison of e-passport
implementations from ten different countries showed that the
nationality can be determined from eacht implementation’s
fingerprint [25]. For several TLS implementations regular
inference revealed new security vulnerabilities [7]; the FREAK
attack on TLS [26] already showed security flaws caused
by flawed implementations of the TLS state machine, which
might have be found using regular inference.

Regular inference has been extended using predicate ab-
straction [27] to consider the influence of data on the control
flow. In [18], Merten et al. proposed a systematic method to
implement a test harness for LearnLib, including a mapper
and a data monitoring part. There has also been research into
inference of timed automata [28, 29]. Such techniques might
be used to analyse protocol implementations including their
timing behaviour and possibly avoid the problem of timing-
related nondeterminism that we ran into.

Concerning OpenVPN, Vranken [30] developed fuzzers
based on libFuzzer to analyze the OpenVPN implementation
and found four important security vulnerabilities.

VII. CONCLUSION

We presented an automated analysis of two OpenVPN im-
plementations using a technique called protocol state fuzzing,
which uses regular inference to infer state machines of the
OpenVPN server. This approach is able to find logical flaws
in the state machine of implementations, but cannot detect,
for instance, flaws caused by malformed messages, such as the
recent OpenVPN flaws found using fuzzing [30]. We analyzed
the inferred state machines manually, as they are relatively
small; for bigger state machines, one could consider using a
model checker to formally verify properties, as done in [24].

Our analysis abstracts from some of the finer details of the
implementations. First, the state machine is dependent on the
test harness which defines the input alphabet and semantics
of the messages. Our test harness intentionally conceals the
acknowledgement mechanism and the smooth transition of
the key renegotiation mechanism. These concessions to the
precision of the model are necessary to keep the learning
complexity low and reduce the learning time. Second, the
timing-related events which plays a great role in the protocol
cannot be modeled in a simple Mealy machine and therefore
must be abstracted. Modeling timing-related events would

require a more complex model of timed-automata with output,
which can currently not be inferred from real systems. In
addition, those timing-related events cause nondeterminism in
the learning process which can only be handled by introducing
timeouts and delays in the test-harness. They are the main
bottleneck of the learning process and can explain the learning
time ranging from about 40 minutes to 49 hours.

Building a test harness essentially involves re-implementing
an OpenVPN client, able to send correct messages to the server
in any order. This is a difficult and time-consuming task for a
specific protocol, so it is more worthwhile if the test harness
can be reused to analyze many implementations, as has been
done for TLS [7, 23] or SSH [24]. In the case of OpenVPN
there are not as many implementations but the test harness can
be reused to analyze the different versions.

The inferred state machines provide a useful insight into the
decisions - and errors - made in the implementation. They can
be used to easily spot superfluous states and transitions, which
then warrant closer analysis as they may introduce security
flaws. In a security evaluation, they can be used to harden the
implementation by simplifying the state machine, reducing the
risk of vulnerabilities. They can also be used to automatically
infer a specification from an implementation, that could be
automatically updated throughout the software evolution.

The inferred state machines for the implementations of
OpenVPN servers did not reveal any vulnerabilities, and
they comply to what would be expected from a security
protocol. Security-critical errors, such as failures in the TLS
handshake and failed integrity checks or decryption of DATA

messages, always result in a closed connection. The servers
also ignore incorrect messages, such as messages with an
unknown session-id, KEYNEG messages sent after the session
initialization, or DATA message with a wrong key-id. So
our results increase the confidence in the tested OpenVPN
implementations.

It is a shame that the message sequence leading to a
successful OpenVPN connection or the correct behavior when
receiving unexpected messages is not specified clearer in the
OpenVPN documentation. This information could easily be
specified by one (or several) protocol state machine such as
we inferred. The documentation would really benefit from the
addition of such state machines, e.g. the one given in Figure 8
which gives a good overview of the sequence of messages
used to establish an OpenVPN session. Alongside such a state
machine, A prose specification alongside such a state machine
coud then describe the main timing-related events and more
details on how to handle error cases such as unexpected or
incorrect input messages.

REFERENCES

[1] D. Angluin, “Learning regular sets from queries and
counterexamples,” Information and computation, vol. 75,
no. 2, pp. 87–106, 1987.

[2] E. Poll, J. de Ruiter, and A. Schubert, “Protocol state
machines and session languages: specification, imple-



mentation, and security flaws,” in Security and Privacy
Workshops (SPW). IEEE, 2015, pp. 125–133.

[3] M. Feilner, OpenVPN: Building and integrating virtual
private networks. Packt Publishing Ltd, 2006.

[4] H. Raffelt, B. Steffen, and T. Berg, “LearnLib: A library
for automata learning and experimentation,” in Formal
methods for industrial Critical Systems (FMICS’05).
ACM, 2005, pp. 62–71.

[5] “OpenVPN source code documentation,” https://build.
openvpn.net/doxygen/html/, accessed: 2017-06-22.

[6] “OpenVPN security overview,” https://openvpn.
net/index.php/open-source/documentation/security-
overview.html, accessed: 2017-06-22.

[7] J. de Ruiter and E. Poll, “Protocol state fuzzing of TLS
implementations.” in USENIX Security Symposium, 2015,
pp. 193–206.

[8] L. C. Paulson, “Inductive analysis of the internet protocol
TLS,” ACM Transactions on Information and System
Security (TISSEC), vol. 2, no. 3, pp. 332–351, 1999.

[9] G. Dı́az, F. Cuartero, V. Valero, and F. Pelayo, “Auto-
matic verification of the TLS handshake protocol,” in
ACM Symposium on Applied computing. ACM, 2004,
pp. 789–794.

[10] C. He, M. Sundararajan, A. Datta, A. Derek, and J. C.
Mitchell, “A modular correctness proof of IEEE 802.11i
and TLS,” in Computer and Communications Security
(CCS’05). ACM, 2005, pp. 2–15.

[11] K. Ogata and K. Futatsugi, “Equational approach to
formal analysis of TLS,” in International Conference
on Distributed Computing Systems (ICDCS’05). IEEE,
2005, pp. 795–804.

[12] S. Gajek, M. Manulis, O. Pereira, A.-R. Sadeghi, and
J. Schwenk, “Universally composable security analysis
of TLS.” ProvSec, vol. 5324, pp. 313–327, 2008.

[13] P. Morrissey, N. Smart, and B. Warinschi, “A modular se-
curity analysis of the TLS handshake protocol,” Advances
in Cryptology-ASIACRYPT 2008, pp. 55–73, 2008.

[14] T. Jager, F. Kohlar, S. Schäge, and J. Schwenk, “On
the security of TLS-DHE in the standard model,” in
Advances in Cryptology–CRYPTO 2012. Springer, 2012,
pp. 273–293.

[15] H. Krawczyk, K. G. Paterson, and H. Wee, “On the
security of the TLS protocol: A systematic analysis,” in
Advances in Cryptology–CRYPTO 2013. Springer, 2013,
pp. 429–448.

[16] O. Niese, “An integrated approach to testing complex
systems,” Ph.D. dissertation, Dortmund University, 2003.

[17] T. S. Chow, “Testing software design modeled by finite-
state machines,” IEEE transactions on software engineer-
ing, vol. SE-4, no. 3, pp. 178–187, 1978.

[18] M. Merten, M. Isberner, F. Howar, B. Steffen, and
T. Margaria, “Automated learning setups in automata
learning,” Leveraging Applications of Formal Methods,
Verification and Validation. Technologies for Mastering
Change, pp. 591–607, 2012.

[19] G. Shu and D. Lee, “Testing security properties of

protocol implementations-a machine learning based ap-
proach,” in International Conference on Distributed
Computing Systems (ICDCS’07). IEEE, 2007, pp. 25–
25.

[20] J. Narayan, S. K. Shukla, and T. C. Clancy, “A survey
of automatic protocol reverse engineering tools,” ACM
Computing Surveys, vol. 48, no. 3, pp. 40:1–40:26, 2016.

[21] F. Aarts, J. de Ruiter, and E. Poll, “Formal models of
bank cards for free,” in Software Testing, Verification
and Validation Workshops (ICSTW’13). IEEE, 2013,
pp. 461–468.

[22] F. Aarts, J. Schmaltz, and F. Vaandrager, “Inference and
abstraction of the biometric passport,” Leveraging Appli-
cations of Formal Methods, Verification, and Validation,
pp. 673–686, 2010.

[23] J. de Ruiter, “A tale of the OpenSSL state machine: A
large-scale black-box analysis,” in Nordic Conference on
Secure IT Systems. Springer, 2016, pp. 169–184.

[24] P. Fiterău-Broştean, T. Lenaerts, E. Poll, J. de Ruiter,
F. Vaandrager, and P. Verleg, “Model learning and model
checking of SSH implementations,” in SPIN Symposium
on Model Checking of Software (SPIN’17). ACM, 2017,
pp. 142–151.

[25] H. Richter, W. Mostowski, and E. Poll, “Fingerprinting
passports,” in NLUUG spring conference on security,
2008.

[26] A. D.-L. Benjamin Beurdouche, Karthikeyan Bhargavan,
C. Fournet, M. Kohlweiss, A. Pironti, P.-Y. Strub, and
J. K. Zinzindohoue, “A messy state of the union: Taming
the composite state machines of TLS,” in IEEE Security
and Privacy (SP 2015). IEEE, 2015, pp. 535–552.

[27] F. Aarts, B. Jonsson, and J. Uijen, “Generating models
of infinite-state communication protocols using regular
inference with abstraction.” ICTSS, vol. 6435, pp. 188–
204, 2010.

[28] O. Grinchtein, B. Jonsson, and M. Leucker, “Inference of
timed transition systems,” Electronic Notes in Theoretical
Computer Science, vol. 138, no. 3, pp. 87–99, 2005.

[29] S. E. Verwer, “Efficient identification of timed automata:
Theory and practice,” Ph.D. dissertation, TU Delft, Delft
University of Technology, 2010.

[30] G. Vranken, “The OpenVPN post-audit bug bo-
nanza,” https://guidovranken.wordpress.com/2017/06/21/
the-openvpn-post-audit-bug-bonanza/, 2017, accessed:
2017-08-9.


