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Abstract. Algorithms for probabilistic inference in Bayesian net-
works are known to have running times that are worst-case expo-
nential in the size of the network. For networks with a moralised
graph of bounded treewidth, however, these algorithms take a time
which is linear in the network’s size. In this paper, we show that
under the assumption of the Exponential Time Hypothesis (ETH),
small treewidth of the moralised graph actually is a necessary condi-
tion for a Bayesian network to render inference efficient by an algo-
rithm accepting arbitrary instances. We thus show that no algorithm
can exist that performs inference on arbitrary Bayesian networks of
unbounded treewidth in polynomial time, unless the ETH fails.

1 INTRODUCTION

The most important computational problem for Bayesian networks
is probabilistic inference, that is, the problem of establishing a pos-
terior probability distribution Pr(X |e) for a variable X of interest,
given evidence e for some (other) variables in the network. Several
researchers have investigated this problem and have designed various
algorithms taking different approaches, such as message passing [1],
variable elimination [2], and junction-tree propagation [3]. Current
Bayesian-network tools mostly implement the junction-tree propa-
gation algorithm, or a variant thereof, for probabilistic inference.

Algorithms for probabilistic inference with arbitrary Bayesian net-
works all have a running time that is worst-case exponential in the
size of the network at hand. When the graphical structure of the
network is a polytree with bounded indegree, probabilistic infer-
ence can be done in polynomial time, however, for example us-
ing the message-passing algorithm. So, while for specific classes
of Bayesian networks probabilistic inference can be performed ef-
ficiently, for each algorithm there are networks for which inference
will take exponential time. Researchers have investigated the compu-
tational complexity of the problem of probabilistic inference in gen-
eral and have established unfavourable complexity results. Cooper
[4] was the first to prove NP-hardness of the problem. Other re-
searchers since then showed that specific variants of the problem are
not merely NP-hard: some variants were proven PP-complete [5] or
#P-complete [6].

The complexity results cited above concern inference in Bayesian
networks in general, that is, these results pertain to arbitrary instances
of the problem of probabilistic inference. Investigation of the run-
time properties of the junction-tree propagation algorithm has shown
that computing a posterior probability distribution for a variable in
a network whose moralised graph has bounded treewidth, actually is
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exponential only in this graph’s treewidth and linear in the size of the
network. This complexity result is of high practical value for real-life
application of Bayesian networks, since it implies that probabilistic
inference can be feasibly performed on networks of bounded size
whose moralised graph has a small treewidth. This property is well-
known among network engineers and is commonly translated into the
heuristic guideline of ensuring that all variables in a network under
construction have a limited number of parents.

In this paper, we investigate the necessity of the property of
bounded treewidth for efficient probabilistic inference in Bayesian
networks. We show that under assumption of the Exponential Time
Hypothesis (ETH), small treewidth of a network’s moralised graph is
not just a sufficient but actually a necessary condition for the network
to render probabilistic inference efficient by an algorithm accepting
arbitrary instances. In other words, we show that, unless the ETH
fails, no algorithm can exist that solves arbitrary instances of prob-
abilistic inference with large treewidth in polynomial time. There
might nevertheless be some specific structural graph property that
may be exploited by an algorithm to solve particular classes of in-
stances in polynomial time.

The necessity of small treewidth for algorithms to run in poly-
nomial time has also been investigated for the closely related prob-
lems of constraint satisfaction and graph homomorphism [7, 8]. Un-
der assumption of the ETH, these problems were shown to not allow
algorithms solving instances of unbounded treewidth in polynomial
time. In addition, a sub-exponential lower bound was derived on the
running time of any algorithm taking arbitrary instances with large
treewidth [9]. We build upon this result and show that the constraint-
satisfaction problem can be reduced to the problem of probabilis-
tic inference in Bayesian networks, in polynomial time and preserv-
ing treewidth. From this reduction, we then have that if an algo-
rithm for probabilistic inference exists that solves arbitrary instances
with large treewidth in sub-exponential time, then this algorithm also
solves such instances of the constraint-satisfaction problem in sub-
exponential time, which would contradict the ETH.

The paper is organised as follows. In Section 2, we introduce our
notational conventions and review some concepts from complexity
theory. Section 3 outlines our basic approach to proving the paper’s
main result. Section 4 then presents the actual proof of the result
stating that bounded treewidth is a necessary condition for efficient
inference in Bayesian networks. The paper ends with our concluding
observations in Section 5.

2 PRELIMINARIES

We introduce our notational conventions, and provide some prelimi-
naries from graph theory and from complexity theory.



2.1 Bayesian networks
A Bayesian network B is a model of a joint probability distribution
Pr over a set of stochastic variables. The network includes a directed
acyclic graph GB = (V,A), where V denotes the set of variables
and A captures the probabilistic (in)dependencies between them. We
use upper case letters X to denote individual variables from V and
bold-faced upper case letters X to denote sets of variables. A lower
case letter x is used to indicate a value of a variable X , and a bold-
faced lower case letter x denotes a joint value assignment to a set
of variables X; note that variables can have arbitrarily many values.
To capture the strengths of the dependency relationships between the
variables, a network further includes a set Γ = {PrX | X ∈ V} of
(conditional) probability distributions PrX(X | y) for each variable
X given all value assignments y to the set of parents π(X) of X
in the graph G. The network thereby models the joint probability
distribution Pr(V) =

Q
X∈V PrX(X |π(X)) over its variables.

In this paper, we study the computational complexity of proba-
bilistic inference in Bayesian networks, that is, we study the problem
of computing a posterior probability distribution Pr(X | e) over a
variable X of interest, given evidence e for some (other) variables in
the network. For formulating our results in the sequel, we introduce
the decision variant of the problem of positive inference:

POSITIVE INFERENCE

Instance: A Bayesian network B = (GB, Γ) with its joint
probability distribution Pr, an output variable X ∈ V with a value
x, and a set of evidence variables E ⊆ V with a joint value
assignment e.
Question: Does Pr(x |e) > 0 hold ?

The size of a Bayesian network B, denoted ‖B ‖, is taken to be the
number of bits needed to describe B by a reasonable encoding. Its
complexity is measured in this paper by the treewidth of the moralisa-
tion GM

B of its graph GB. This moralisation is the undirected graph
that is obtained from GB by adding arcs so as to connect all pairs of
parents of a variable, and then dropping all directions; we will use the
phrase ‘moralised graph’ to refer to the moralisation of the graph of
a network. A triangulation of the moralised graph GM

B is any graph
GT that embeds GM

B as a subgraph and in addition is chordal, that
is, it does not include loops of more than three variables without any
pair being adjacent in GT. A tree-decomposition of a triangulation
GT is a tree TG such that

• each node Xi in TG is a bag of nodes which constitute a clique
in GT;

• for every i, j, k, if Xj lies on the path from Xi to Xk in TG, then
Xi ∩Xk ⊆ Xj .

The width of the tree-decomposition TG of the graph GT equals
maxi(|Xi| − 1), that is, it equals the size of the largest clique in
GT, minus 1. The treewidth of the moralised graph of the network
B, denoted tw(GM

B ), now is the minimum width over all possible
tree-decompositions of GM

B .
In the proofs of our results in the sequel, we use a so-called

nice tree-decomposition of the moralised graph of a Bayesian net-
work. Such a decomposition has a particularly simple structure: it is
a rooted tree in which every node has at most two children. More
specifically, each node in a nice tree-decomposition T is either a leaf
node, an insert node, a forget node, or a join node:

• a leaf node Xi is a leaf in T with |Xi| = 1;

• an insert node Xi is a node in T with a single child Xj such that
Xi = Xj ∪ {Y } for some Y ∈ V \Xj ;

• a forget node Xi is a node in T with a single child Xj such that
Xi = Xj \ {Y } for some Y ∈ Xj ;

• a join node Xi is a node in T with two children Xj and Xk such
that Xi = Xj = Xk.

From graph theory, we have that any tree-decomposition T of width
w with b nodes, can be converted into a nice tree-decomposition of
the same width with O(w · b) nodes, in time O(f(w) · b) for a poly-
nomially computable function f [10, 11].

2.2 Complexity theory
In this paper, we use some basic constructs from computational com-
plexity theory. We will briefly review these constructs here; for fur-
ther details, we refer to for example [12, 13].

We assume that for every computational problem P , there exists
an encoding which translates arbitrary instances of P into strings,
such that the yes-instances of P constitute a language; the no-
instances of the problem are not included in the language. We now
say that a computational problem Q is polynomial-time reducible
to another problem P if there exists a polynomial-time computable
function f such that x ∈ Q if and only if f(x) ∈ P . Such reductions
are commonly assumed to be polynomial-time many-one reductions.
In this paper, however, we will encounter another type of reduction
which, in addition to being computable in polynomial time, serves to
preserve some structural property among instances.

Formally, a complexity class is a class of languages, where each
language is an encoding of a computational problem. We say that a
problem P is hard for a specific complexity class if every problem Q
from the class can be reduced to P by a polynomial-time reduction.
The problem P is complete for the class if it is hard for the class and
in addition is a member of the class. The problem P may then be
regarded at least as hard as any other problem from the class: since
any problem Q from the class can be reduced to P in polynomial
time, a polynomial-time algorithm for P would imply a polynomial-
time algorithm for every problem in the class.

The main complexity result presented in this paper pertains to the
problem of positive inference in Bayesian networks reviewed above.
Our result is proved basically by a reduction from the constraint-
satisfaction problem. We state the latter problem more formally:

CONSTRAINT SATISFACTION

Instance: A constraint-satisfaction tuple (V,D,C), where V is a
set of variables, D is a set of values, and C is a set of constraints
〈t,R〉, where t ∈ V ×V is a pair of variables and R ⊂ D×D is
a (non-universal) binary relation over D.
Question: Is there an assignment function f : V → D such that
every constraint from C is satisfied, that is, such that for each
constraint 〈t,R〉 ∈ C, with t = (Vi, Vj) the property
(f(Vi), f(Vj)) ∈ R holds ?

A constraint-satisfaction instance is often represented by its so-called
primal graph. The primal graph GI of a constraint-satisfaction in-
stance I is the undirected graph GI = (V,E) such that (Vi, Vj) ∈
E if and only if there is a constraint 〈t,R〉 ∈ C with t = (Vi, Vj).

For our main result, we further exploit the Exponential Time Hy-
pothesis (ETH). This hypothesis states that there exists a constant
c > 1 such that deciding any 3SAT instance with n variables takes



at least Ω(cn) time [14]. Note that assuming that the ETH holds is a
stronger assumption than assuming that P 6= NP: a sub-exponential
but not polynomial-time algorithm for the 3SAT problem would con-
tradict the ETH but would not invalidate P 6= NP.

3 THE BASIC APPROACH

The necessity of small treewidth for algorithms to run in polyno-
mial time was recently investigated for the constraint-satisfaction
and graph-homomorphism problems [7] and for the problem of infer-
ence in undirected graphical models [8]. These problems are closely
related to our probabilistic-inference problem in terms of their un-
derlying graph constructs. Under common assumptions from com-
plexity theory, these problems were shown to not allow algorithms
solving instances with large treewidth in polynomial time. Marx [9]
further derived a sub-exponential lower bound on the running time
of any algorithm taking instances of the constraint-satisfaction or
graph-homomorphism problems with large treewidth. More specif-
ically, he formulated the following result with respect to constraint
satisfaction: for any recursively enumerable class G of graphs with
unbounded treewidth, if there exists a computable function f such
that CONSTRAINT SATISFACTION can be decided by an algorithm
running in time

f(GI) · ‖I‖o(
tw(GI)

log tw(GI) )

for arbitrary instances I with a primal graph GI ∈ G with treewidth
tw(GI), then the ETH fails. Note that the stated property holds for
any computable function f and, hence, also for functions that are
exponential in the treewidth of the instance’s graph.

In this paper, we build upon Marx’ result. We show that the
constraint-satisfaction problem can be reduced to the problem of
positive inference in Bayesian networks, using a polynomial-time
reduction which preserves the treewidth of an instance; note that
since we are interested in the effect of treewidth on the feasibility
of probabilistic inference, it is important that our reduction preserves
treewidth. Given an instance I of the constraint-satisfaction prob-
lem, we construct, in polynomial time, an instanceP of the inference
problem with the same treewidth up to a constant term, such that a
solution toP yields also a solution to I. Intuitively speaking, we then
have that if an algorithm A exists that solves arbitrary instances of the
inference problem with large treewidth in sub-exponential time, then
we can construct an algorithm B solving instances of the constraint-
satisfaction problem with large treewidth in sub-exponential time,
which would contradict the ETH.

4 THE COMPLEXITY RESULT

In this section we present a reduction from the constraint-satisfaction
problem to the problem of probabilistic inference, which has the spe-
cial property of preserving the treewidth of an instance. We begin by
formally defining this type of reduction.

Definition 1 Let A and B be computational problems such that
treewidth is defined on instances of both A and B. We say that A
is polynomial-time treewidth-preserving reducible, or tw-reducible,
to B if there exists a polynomial-time computable function g and
a linear function l such that x ∈ A if and only if g(x) ∈ B and
tw(g(x)) = l(tw(x)). The pair (g, l) is called a tw-reduction.
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Figure 1. The primal graph GIex (a) and an associated
tree-decomposition (b) of the constraint-satisfaction instance Iex

We now show that the constraint-satisfaction problem is tw-reducible
to the problem of probabilistic inference. Given an instance I =
〈V,D,C〉 of the constraint-satisfaction problem, we will construct
a Bayesian network BI = (GBI , Γ) that simulates I. Upon doing
so, we will take special care that the moralisation of GBI has the
same treewidth, up to a constant term, as the primal graph of I. In
the construction, we will introduce a new, designated variable A1

with values TRUE and FALSE, and then show that in the resulting
network BI we have that Pr(A1 = TRUE) > 0 if and only if I has
a solution.

Example 1 Throughout this section, we will illustrate the various
steps in the construction of the Bayesian network by the instance
Iex = 〈V,D,C〉 of the constraint-satisfaction problem, where
V = {X1, X2, X3, X4}, D = {a, b, c}, and C includes

〈(X1, X2), {(a, a), (b, a)}〉
〈(X1, X4), {(a, a), (a, b), (b, a), (c, a)}〉
〈(X2, X3), {(a, b), (b, a), (b, c), (c, b)}〉
〈(X3, X4), {(b, a), (b, b)}〉

Note that the instance Iex is a yes-instance of the constraint-
satisfaction problem; an example solution fex sets X1 = b, X2 = a,
X3 = b, and X4 = a. The primal graph GIex of the instance and
an associated tree-decomposition are given in Figure 1.

Given a constraint-satisfaction instance I, we begin the construction
of the network BI by first modelling the instance’s constraints sepa-
rately. For each variable Xi from I, a root node Xi is introduced in
the network, with the domain D for its values; Xi is associated with
a uniform probability distribution PrXi(Xi). For every constraint
〈t,R〉 with t = (Xj , Xk) from I, we further add a new node Ri to
the network, with TRUE and FALSE for its values and with Xj and
Xk as its parents. For each joint value assignment x to Xj and Xk,
we set the conditional probability distribution for Ri given x to

PrRi(Ri = TRUE |x) =


1 if x ∈ R
0 otherwise

In the sequel, we will use the phrase ‘relation node’ when referring
to such a node Ri. We will further use a tilde notation to indicate the
intermediate Bayesian network and its graphical structures obtained
so far. Figure 2 now shows the graph eGex of the network eBex which
is thus far constructed from our running example Iex.

With respect to treewidth, we observe that the relation nodes Ri

are simplicial in the moralisation of the graph eG constructed so far,
that is, in the moralised graph eGM they are adjacent to a complete
set of nodes. Informally speaking, a node Ri and its two parents
Xj and Xk from eG are joined in a clique in eGM, which implies
a treewidth of at least two of the moralised graph. More formally,
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Figure 2. The graph eGex constructed in the first step of the reduction of
the constraint-satisfaction instance Iex
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Figure 3. The tree-decomposition eTex of the moralisation of the grapheGex constructed so far from the instance Iex

from the theory of treewidth (see for example [15]), we know that
for any simplicial node V with degree d in an undirected graph G,
the treewidth of G equals the maximum of d and the treewidth of G
minus V . Using this result, we have that the moralisation of the grapheG constructed so far from the constraint-satisfaction instance I has a
treewidth of max(2, tw(GI)), where GI is the primal graph of the
instance I. The first step of the construction can thus have increased
the treewidth of the original instance by at most 1.

So far the various constraints from the constraint-satisfaction in-
stance I have been modelled separately in the Bayesian network un-
der construction. A solution to I has to satisfy all constraints simul-
taneously, however. This requirement will be incorporated in the in-
termediate network eB constructed so far by joining the nodes repre-
senting the separate constraints by extra nodes mimicking the ‘and’-
operator. Note that modelling the ‘and’ has to be done with care
to avoid an exponential blow-up of the treewidth of the network’s
moralised graph. Such a blow-up would typically occur if we were
to add a single designated node A1 with all relation nodes Ri for
its parents; it would even occur if we were to construct a log-deep
binary tree to connect the relation nodes to A1.

To mimic the ‘and’-operator without blowing up treewidth, we
will exploit the structure of a specific tree-decomposition of the
moralised graph eGM obtained so far. The basic idea is that by us-
ing this decomposition, we can monitor the treewidth when adding
nodes and arcs to the graph eG. For this purpose, we will use a
tree-decomposition eT of eGM such that eT is a rooted tree and ev-
ery node in eT has at most two children. In the proof of our result,
we will assume, for ease of exposition, that the tree-decompositioneT used in the construction is a nice decomposition. In our running
example, however, we will use a non-nice decomposition meeting
the two requirements mentioned above, simply because a nice tree-
decomposition would take too much space.
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Figure 4. The graph Gex which results for the Bayesian network Bex

under construction after adding nodes Ai and appropriate arcs to eGex

Now, let eT be a nice tree-decomposition of the moralised grapheGM obtained so far, and let m be the number of nodes in eT. Note
that each node in eT is a bag Xk of nodes Ri and Xj from the orig-
inally constructed graph eG. Based upon this decomposition, we will
now add new nodes A1, . . . , Am and arcs (Ri, Ak) to the network
under construction. For each node Xk in eT, we add a node Ak toeG and, for every arc (Xk,Xl) from eT, we add an arc (Al, Ak); we
further add an arc (Ri, Ak) for each relation node Ri in the bag Xk.
For every newly added node Ai, i = 1, . . . , m, we set, for each joint
value assignment x to its parents, the conditional probability distri-
bution given x to

PrAi(Ai = TRUE |x) =


1 if x =

V
V ∈π(Ai)

(V = TRUE)

0 otherwise

For a node Ai without any parents, we set PrAi(Ai = TRUE) = 1.
Note that the conditional probability distributions for a node Ai cor-
respond to the logical ‘and’ of the values of its parents π(Ai); in
the sequel, we will therefore sometimes use the phrase ‘and node’
to refer such a node Ai. From the above construction, we now have
that all relation nodes Ri from the originally constructed graph eG
are chained together into A1 and that Pr(A1 = TRUE) > 0 if
Pr(

V
i(Ri = TRUE)) > 0.

For our running example, Figure 3 shows an appropriate (yet non-
nice) tree-decomposition eTex of the moralisation of the graph eGex

constructed from Iex so far. We assume that node X1 is the root of
the tree. Since the decomposition includes six nodes, we add six new
nodes A1, . . . , A6 to eGex. For the first two nodes X1 and X2 fromeTex, we add the nodes A1 and A2 to the graph under construction,
along with the arcs (A2, A1) and (R1, A1); the first of these arcs is
added because X1 is the parent of X2 in the tree eTex, and the second
arc is added because the relation node R1 is included in the bag X1.
For the consecutive nodes Xi, i = 3, . . . , 6, from eTex, we further
add nodes A3, . . . , A6 and arcs (A3, A2), (A4, A2), (A5, A4), and
(A6, A4). After adding appropriate arcs from the relation nodes Ri

to the and-nodes Aj , the graph Gex from Figure 4 results. This graph
now is the graph of the Bayesian network Bex constructed from the
constraint-satisfaction instance Iex.

To allow investigation of the treewidth of the constructed Bayesian
network BI , we complete our reduction by constructing a tree-
decomposition TBI of the moralised graph GM

BI of the network.
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Figure 5. The tree-decomposition Tex of the moralisation of the graph
Gex constructed from the constraint-satisfaction instance Iex

We will then use this decomposition to show that the moralisation
of GBI has the same treewidth, up to a constant term, as the pri-
mal graph of the original constraint-satisfaction instance I. The tree-
decomposition TBI used for this purpose is obtained from eT by
adding to each node Xk the and-node Ak and the nodes Al that
are contained in the children of Xk in eT. It is readily verified that
the thus constructed tree TBI indeed is a tree-decomposition of the
moralised graph GM

BI . The tree-decomposition Tex that is thus ob-
tained for our running example, is shown in Figure 5.

The following theorem now states that the constraint-satisfaction
problem tw-reduces to the problem of positive inference in Bayesian
networks. More specifically, we will show that for any instance I of
the constraint-satisfaction problem, we can construct a probabilistic
network BI as described above such that in this network we have
that Pr(A1 = TRUE) > 0 if and only if the instance I is satisfiable;
we further have that the treewidth of the moralised graph of the con-
structed network BI is equal, up to a constant term, to the treewidth
of the primal graph of the constraint-satisfaction instance I.

Theorem 1 CONSTRAINT SATISFACTION tw-reduces to POSITIVE

INFERENCE.

Proof. To show that the construction described above indeed gives
a polynomial-time treewidth-preserving reduction f from CON-
STRAINT SATISFACTION to POSITIVE INFERENCE, we need to
show that the construction maps instances x of CONSTRAINT SA-
TISFACTION to instances f(x) of POSITIVE INFERENCE, such that
f(x) is a yes-instance of POSITIVE INFERENCE if and only if x is
a yes-instance of CONSTRAINT SATISFACTION; we further have to
show that the construction is computable in polynomial time and pre-
serves the treewidth of an instance up to a constant term.

Let I = (V,D,C) be an instance of CONSTRAINT SATIS-
FACTION, and let P = (BI , A1, TRUE, ∅,>) be the instance
of POSITIVE INFERENCE that is constructed from I as described
above; note that since the inference instance does not include any ev-
idence variables, its evidence is set to universal truth. Now suppose
that the instance P is a yes-instance of POSITIVE INFERENCE, that
is, suppose that in the network BI we have that Pr(A1 = TRUE) >
0. The ‘and’-construct modelled with the nodes Aj then guarantees
that Pr(

V
i(Ri = TRUE)) > 0. We now observe that, for any re-

lation node Ri with the parent nodes Xj and Xk, we have that
Pr(Ri = TRUE |x) = 1 for a joint value assignment x to {Xj , Xk}
if and only if x is included in the relation R from the constraint
〈(Xj , Xk),R〉 in I. So, from Pr(

V
i(Ri = TRUE)) > 0, we con-

clude that there must exist a joint value assignment to all constraint
variables Xj that satisfies all constraints; hence, the instance I is
a yes-instance of the constraint-satisfaction problem. Now suppose
that there exists a satisfying assignment to the variables Xj from the

constraint-satisfaction instance I. Then, Pr(
V

i(Ri = TRUE)) > 0
and hence Pr(A1 = TRUE) > 0. We further observe that the con-
struction described above can be carried out in polynomial time,
since we introduce into the Bayesian network BI only a polynomial
number of nodes for each variable from the instance I.

Having shown that the constraint-satisfaction problem reduces to
the problem of positive inference in Bayesian networks, we still have
to show that the reduction f described above preserves the treewidth
of an instance up to a constant term. We thus have to show that there
exists a linear function l with tw(f(x)) = l(tw(x)) for every in-
stance x of the constraint-satisfaction problem. We already argued
above that the moralisation of the intermediate graph eG constructed
in the reduction has a treewidth of max(2, tw(GI)) where tw(GI)
is the treewidth of the primal graph of the constraint-satisfaction in-
stance I. The first step in the construction thus can have increased
the treewidth by at most 1. Note that this increase can have been ef-
fectuated only if the primal graph GI had a treewidth of 1, that is,
only if the primal graph was a rooted tree. We now show that by
adding the and-nodes Aj and their associated arcs in the second step
of the construction of GBI , the treewidth can have been increased
by at most three. To facilitate our proof, we assume that the tree-
decomposition eT that is used for the construction of GBI , is nice;
we would like to note, however, that the result can be proved for any
rooted decomposition in which every node has at most two children.
From the niceness assumption, we have that every node in eT is either
a leaf node, an insert node, a forget node, or a join node. We consider
each of these types of node separately:

• let Xi be a leaf node from the tree-decomposition eT. Since this
node has no children, just the and node Ai is added to the bag Xi

in the construction of TBI . By doing so, the width of the decom-
position can have increased by at most 1.

• now let Xi be either an insert node or a forget node from eT. Since
this node has a single child Xj , the nodes Ai and Aj are added to
the bag Xi in the construction of TBI . The width of the decom-
position thus can have increased by 2 at the most.

• let Xi be a join node from eT. Since this node has two children
Xj and Xk, in the construction of TBI the three and nodes Ai,
Aj and Ak are added to the bag Xi. Compared to eT, the width of
TBI can thus have increased by 3 at the most.

We conclude that the construction of the tree-decomposition TBI
from eT can have increased treewidth by at most three. Now recall
that we showed before that the first step of the reduction resulted in a
graph whose moralisation had a treewidth of max(2, tw(GI)). Sup-
pose that the intermediate graph eG resulting from the first step had a
treewidth equal to tw(GI). The above arguments now show that the
graph GBI resulting after the second step can have a treewidth of at
most tw(GI) + 3. Now suppose that the graph eG had a treewidth
equal to 2. Any node in the tree-decomposition eT whose bag in-
cludes three nodes from eG then is a leaf node. From this observa-
tion, we have that the treewidth of GBI is at most 4. We conclude
that in either case the treewidth is increased by at most three. The
above reduction thus preserves treewidth up to a constant term.

From the above considerations, we conclude that CONSTRAINT

SATISFACTION tw-reduces to POSITIVE INFERENCE as stated in
the theorem. 2

The following theorem now states our main result, which is derived
directly from the previous theorem and the result from Marx cited



before. Intuitively speaking, the theorem states that if an algorithm
A exists that solves arbitrary instances of the inference problem with
large treewidth in sub-exponential time, then we can construct an
algorithm B solving instances of the constraint-satisfaction problem
with large treewidth in sub-exponential time, which would contradict
the Exponential Time Hypothesis.

Theorem 2 If there exists a computable function f such that POSI-
TIVE INFERENCE can be decided by an algorithm running in time

f(GM
B ) · ‖B‖

o(
tw(GM

B )

log tw(GM
B )

)

for arbitrary instances P = (B, C, c,E, e) with a moralised graph
GM
B with treewidth tw(GM

B ), then the ETH fails.

Proof. We suppose that there exists an algorithm A that solves ar-
bitrary instances P of the POSITIVE INFERENCE problem with un-
bounded treewidth in time

f(GM
B ) · ‖B‖

o(
tw(GM

B )

log tw(GM
B )

)

where f is a computable function and GM
B denotes the moralised

graph of B. Now, let I be an instance of CONSTRAINT SATIS-
FACTION whose primal graph GI has sufficiently large treewidth.
From Theorem 1, we have that I can be reduced, in polynomial time,
to an instance of POSITIVE INFERENCE with a network BI with a
moralised graph GBI of treewidth tw(GBI ) ≤ tw(GI) + 3. Since
we assumed that A solves the inference problem on the network BI
in time

f(GM
BI ) · ‖BI‖

o(
tw(GM

BI
)

log tw(GM
BI

)
)

there exists a computable function g such that I can be solved in time

g(GI) · ‖I‖o(
tw(GI)

log tw(GI) )

By Marx’ result reviewed in Section 3, this finding contradicts the
ETH. 2

5 CONCLUSIONS
Algorithms for probabilistic inference with arbitrary Bayesian net-
works all have a running time that is worst-case exponential in the
size of the network. A well-known result from studies of the runtime
properties of the commonly used junction-tree propagation algo-
rithm, is that computing a posterior probability distribution for a vari-
able in a network whose moralised graph has bounded treewidth, is
exponential only in this treewidth. For networks of bounded size with
small treewidth, therefore, inference can be feasibly performed. In
this paper, we showed that small treewidth of a network’s moralised
graph is not just a sufficient but actually a necessary condition for a
network to render probabilistic inference efficient by an algorithm
accepting arbitrary instances. We showed, more specifically, that
there cannot exist an algorithm solving arbitrary instances of the
probabilistic-inference problem with large treewidth in polynomial
time, unless the Exponential Time Hypothesis fails. We showed, in
fact, that any algorithm solving arbitrary instances of the problem of

probabilistic inference must have a running time of

f(GM) · ‖B‖ω(
tw(GM)

log tw(GM)
)

where B is the network at hand and GM is its moralised graph. Even
in the absence of evidence any such algorithm will take exponen-
tial time in the treewidth of the moralised graph, up to a logarithmic
factor in the exponent.

To conclude, we would like to note that our result for the prob-
lem of probabilistic inference is weaker than Marx’ result for the
constraint-satisfaction and graph-homomorphism problems, which
provides a lower bound on the running time for algorithms solving
these problems on any recursively enumerable class of graphs: while
Marx’ result thus holds also for restricted classes of graphs, our re-
sult still allows algorithms to use specific structural properties of a
network, such as particular arc configurations or planarity properties
of the moralised graph, to arrive at sub-exponential running times.
Whether such properties can indeed be identified or whether our re-
sult can be extended to hold for any instance of the inference problem
remains an open question for now.
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