Languages and Automata Assignment 6, Tuesday 11th December, 2018

Teacher	E-Mail	Room	Time
Menno Bartels	m.m.bartels@student.ru.nl	HG00.065	8:30 - 10:15
Maris Galesloot	m.galesloot@student.ru.nl	HG00.086	8:30 - 10:15
Leon Gondelman	leon.gondelman@gmail.com	HG00.114	8:30 - 10:15
Ellen Gunnarsdóttir	E.Gunnarsdottir@student.ru.nl	HG00.308	8:30 - 10:15
Toine Hulshof	T.Hulshof@student.ru.nl	HG00.633	8:30 - 10:15
Alexis Linard	A.linard@cs.ru.nl	HG00.310	8:30 - 10:15
Jan Martens	j.martens@student.ru.nl	HG01.028	8:30 - 10:15
Serena Rietbergen	serena.rietbergen@student.ru.nl	HG01.029	8:30 - 10:15
Bas Steeg	bas.steeg@student.ru.nl	HG01.028	10:30 - 12:15
Nienke Wessel	N.Wessel@student.ru.nl	E1.09	10:30 - 12:15
Bas Hofmans	B.Hofmans@student.ru.nl	HG00.308	15:30 - 17:15
Amber Pater	A.Pater@student.ru.nl	HG00.310	15:30 - 17:15

Exercise teachers. The student groups are supervised by the following teachers:

Postboxes are located in the Mercator building on the ground floor. There will be boxes labelled with LnA and the corresponding group teacher's name. There will be 1 box, the *Uitleverbak*, for work that hasn't been picked up at the exercise hours.

Handing in your answers: There are two options:

- 1. E-mail: Send your solutions by e-mail to your exercise class teacher (see above) with subject "L&A: assignment 6". This e-mail should only contain a single PDF document as attachment (unless explicitly stated otherwise). Before sending an e-mail make sure:
 - the file is a PDF document
 - your name is part of the filename (for example MyName_assignment-6.pdf)
 - your name and student number are included in the document.
 - please do not submit photographs (scans of handwritten notes are fine).
- 2. Post box: Put your solutions in the appropriate post box (see above). Before putting your solutions in the post box make sure:
 - your name, student number, and IC, KI, Wiskunde or Science are written clearly on the document.

Deadline: Tuesday 18th December, 2018, 8:30 (in Nijmegen!)

Goals: After completing these exercises successfully you should be able to show that a language is context free by giving a push down automaton (PDA) that accepts it. Moreover, you should be able to turn a context free grammar into a PDA and vice versa.

There are 2 mandatory exercises, worth **10 points** in total. There are 2 more, extra hard, exercises. Be aware that these exercises are just for fun, you cannot earn any points with them.

1 Push Down Automata

a) Let L_1 be given by

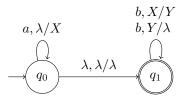
$$L_1 = \{wcv \in \{a, b, c\}^* \mid w, v \in \{a, b\}^* \text{ and } |v|_a = 2|w|_a\}$$

Construct a *deterministic* PDA that accepts L_1 . Explain your answer. (2pt)

b) Let L_2 be given by

$$L_2 = \{ w \in \{a, b\}^* \mid |w|_a = |w|_b \}.$$

Construct a PDA that accepts L_2 , explain your answer (!), and show that the **(3pt)** word *abba* is accepted but *aa* is not.


2 CFGs and PDAs

a) The following grammar over the alphabet $A = \{a, (,), +\}$ generates expressions such as (a + a) + a.

$$S \longrightarrow F \mid S + S$$
$$F \longrightarrow a \mid (S)$$

Use the construction given in the lecture to give a two state PDA that accepts (2pt) the language generated by this grammar.

b) Let M be the PDA over the alphabet $\{a, b\}$ and with stack alphabet $\{X, Y\}$ given by the following graph.

Use the procedure given in the lecture to construct a grammar that generates (3pt) $\mathcal{L}(M)$, and give the derivation for the word *abb*.

3 Fun Exercises – Closure Properties of CFLs

- a) Let $\mathcal{A} = (Q_1, q_{1,0}, F_1, \delta_1 : Q_1 \times \Sigma \to \mathcal{P}(Q_1))$ be an NFA accepting the regular language Land let $\mathcal{B} = (Q_2, \Sigma, \Gamma, q_{2,0}, F_2, \delta_2 : Q_2 \times \Sigma_\lambda \times \Gamma_\lambda \to \mathcal{P}(Q_2 \times \Gamma_\lambda))$ be a PDA that accepts the context free language D. Show that $L \cap D$ is context free by defining a PDA accepting it. Use $Q_1 \times Q_2$ as state space.
- b) Let \mathcal{A} and \mathcal{B} be given as in the following diagrams.

Apply your construction from **3a**) to these automata to define a PDA that accepts $\mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\mathcal{B})$.

4 Fun Exercises – Beyond CFLs

We extend PDAs to two-stack PDAs (PDA₂). A PDA₂ M is given by a tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ just like a PDA, except that

$$\delta: Q \times \Sigma_{\lambda} \times \Gamma_{\lambda} \times \Gamma_{\lambda} \to \mathcal{P}(Q \times \Gamma_{\lambda} \times \Gamma_{\lambda}).$$

Give a suitable extension of the acceptance condition for PDAs, and show that two-stack PDAs are computationally more powerful than PDAs, by showing that there is a PDA_2 that accepts

 $\{a^n b^n c^n \mid n \in \mathbb{N}\}.$