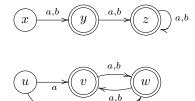
Exercises Coalgebra for Lecture 11

The exercises labeled with (*) are optional and more advanced.

- 1. Consider the set \mathbb{N}^{ω} of streams over the natural numbers. Let $\mathsf{Rel}_{\mathbb{N}^{\omega}}$ be the lattice of relations $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ on streams over \mathbb{N} , ordered by inclusion.
 - (a) Define a function $b \colon \mathsf{Rel}_{\mathbb{N}^{\omega}} \to \mathsf{Rel}_{\mathbb{N}^{\omega}}$ which captures the stream bisimulations, in the sense that $R \in \mathsf{Rel}_{\mathbb{N}^{\omega}}$ is a bisimulation iff $R \subseteq b(R)$. Show that your b is monotone (so $R \subseteq S$ implies $b(R) \subseteq b(S)$). What is the greatest fixed point of b?
 - (b) For $\sigma, \tau \in \mathbb{N}^{\omega}$, we say σ is lexicographically less than τ if either
 - i. σ and τ are equal, or
 - ii. σ and τ agree on the first i elements, for some i, and $\sigma(i) < \tau(i)$ (we start counting at 0, so this means the (i+1)-th element of σ is strictly below the i-th element of τ).

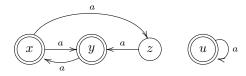
Define a monotone function $b' \colon \mathsf{Rel}_{\mathbb{N}^{\omega}} \to \mathsf{Rel}_{\mathbb{N}^{\omega}}$ such that for any $\sigma, \tau \in \mathbb{N}^{\omega} \colon \sigma$ is lexicographically less than τ if and only if (σ, τ) is contained in a relation R such that $R \subseteq b'(R)$.

2. Consider the following deterministic automaton.



Give a bisimulation up to equivalence that contains (x, u), but which has no more than four pairs in total.

3. Consider the following non-deterministic automaton.



- (a) Draw the determinisation of the automaton.
- (b) The pair $(\{x\}, \{u\})$ is contained in a bisimulation up to congruence (see the notes for the definition; in the lecture, we did an example). What is the smallest one you can find?

- 4. Let (P, \leq) be a partial order. An element $x \in P$ is called *top* if for all $y \in P$: $y \leq x$. An element $x \in P$ is called *bottom* if for all $y \in P$: $x \leq y$. We typically denote a top element, if it exists, by \top , and a bottom element by \bot .
 - (a) Show that bottom and top elements, if they exist, are unique.
 - (b) Show that, if P is a complete lattice, then it has top and bottom elements.
 - (c) Prove that (\mathbb{N}, \leq) , where \mathbb{N} is the set of natural numbers and \leq is the standard smaller or equal relation on numbers is a poset. Is it a complete lattice?
 - (d) Consider now $(\mathbb{N} \cup \{\infty\}, \leq')$, where \leq' is defined as:
 - for all $n \in \mathbb{N} \cup \{\infty\}$: $n \leq' \infty$,
 - for all $n, m \in \mathbb{N}$: $n \leq m$ iff $n \leq m$.

Is $(\mathbb{N} \cup \{\infty\}, \leq')$ a poset? Is there a top element \top ? Is $(N \cup \{\infty\}, \leq')$ a complete lattice?

5. Let $(X, \langle o, \delta \rangle)$ be an automaton over an alphabet A, and define b and b' as in the lecture:

$$b(R) = \{(x,y) \mid o(x) = o(y) \text{ and for all } a \in A., (\delta(x)(a), \delta(y)(a)) \in R\}$$

 $b'(R) = \{(x,y) \mid o(x) \le o(y) \text{ and for all } a \in A., (\delta(x)(a), \delta(y)(a)) \in R\}.$

- (a) Show that the equivalence closure $\operatorname{\sf eqv} \colon \operatorname{\sf Rel}_X \to \operatorname{\sf Rel}_X$ is b-sound, by showing that it is b-compatible: $\operatorname{\sf eqv} \circ b \leq b \circ \operatorname{\sf eqv}$.
- (b) Is eqv also b'-sound? Support your answer with a counterexample or a proof.
- 6. (*) Prove Knaster-Tarski's theorem: if $b: P \to P$ is a monotone function on a complete lattice P, then b has a greatest fixed point $\mathsf{gfp}(b)$, given by

$$\mathsf{gfp}(b) = \bigvee \{x \in P \mid x \le b(x)\}.$$

There are some hints in the notes.

- 7. (*) Let $b, f: P \to P$ be monotone functions on a complete lattice. A function f is b-compatible if $f(b(x)) \leq b(f(x))$ for all $x \in X$. In the last part of the notes, it is briefly explained why compatible functions are interesting; here we'll look at a slightly different use of them.
 - (a) Show that, if f is b-compatible, then $f(\mathsf{gfp}(b)) \leq \mathsf{gfp}(b)$.
 - (b) Let $t: \mathsf{Rel}_{A^{\omega}} \to \mathsf{Rel}_{A^{\omega}}$ be the function defined by $t(R) = R \circ R$, where $R \circ R$ is the relational composition of R with itself. Show that t is b-compatible, where b is the function defined in the first part of Exercise 1.
 - (c) Similar question to the previous one, but with b replaced by b' from the second part of Exercise 1. What can you conclude about lexicographic order of streams, from (a)?