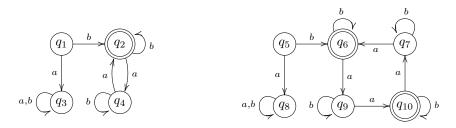
Exercises Coalgebra for Lecture 6

The exercises labeled with (*) are optional and more advanced.

1. Consider the following two deterministic automata. Show that states q_1 and q_5 accept the same language, by proving that they are bisimilar.



2. Consider the following stream system over some set A with $a,b\in A$:

$$x_1 \xrightarrow{a} x_2 \xrightarrow{b} x_3 \xrightarrow{a} x_4 \xrightarrow{b} x_5 \xrightarrow{a} x_6 \xrightarrow{b} \dots$$

What is the largest bisimulation \sim on it? What is the smallest?

- 3. Let A, B be sets, and define $F \colon \mathsf{Set} \to \mathsf{Set}$ by $F(X) = A \times X + B$ and $F(f) = \mathsf{id}_A \times f + \mathsf{id}_B$. For an F-coalgebra $(X, g), x, x' \in X, a \in A, b \in B$, we write $x \xrightarrow{a} x'$ if $g(x) = (a, x') \in A \times X$, and $x \downarrow b$ if $g(x) = b \in B$.
 - (a) Instantiate the abstract notion of bisimulation between F-coalgebras to the above functor F, and spell out the details to obtain a concrete notion of bisimulation, formulated in terms of the notation $x \xrightarrow{a} x'$ and $x \downarrow b$.
 - (b) Give an example of such an F-coalgebra, with two states that are bisimilar (show it with a suitable bisimulation) and two states that are not.
- 4. Let (X, f) be an F-coalgebra, for some functor $F \colon \mathsf{Set} \to \mathsf{Set}$. Show that the diagonal relation $\Delta_X = \{(x, x) \mid x \in X\}$ is a bisimulation on (X, f). Hint: use that $\mathsf{id}_X \colon X \to X$ is a homomorphism, and that there is a bijection $\Delta_X \cong X$.
- 5. Let $(X, \langle o, f \rangle)$ be a stream system over A, that is, a coalgebra for the functor $F(X) = A \times X$. As always, let beh: $X \to A^{\omega}$ be the unique coalgebra homomorphism from $(X, \langle o, f \rangle)$ to the final coalgebra.

Show that, for any two states $x, y \in X$, if beh(x) = beh(y) then $x \sim y$.

6. (*) In the lecture, we have mentioned that homomorphisms preserve bisimilarity. In this exercise, we will investigate the converse. Concretely, for $F \colon \mathsf{Set} \to \mathsf{Set}$ a functor, we would like to prove (under certain conditions) that, if $h \colon (X,f) \to (Y,g)$ is a homomorphism of F-coalgebras, then the kernel relation

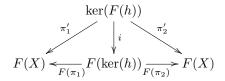
$$\ker(h) = \{(x, y) \in X \times X \mid h(x) = h(y)\}\$$

is a bisimulation on (X, f). Below, we denote the projections of this relation by $\pi_1 \colon \ker(h) \to X$ and $\pi_2 \colon \ker(h) \to X$.

(a) Let F be an arbitrary functor, and $h\colon (X,f)\to (Y,g)$ a homomorphism of $F\text{-}\mathrm{coalgebras}.$ Let

$$\ker(F(h)) = \{(u, v) \in F(X) \times F(X) \mid F(h)(u) = F(h)(v)\},\$$

with projections π'_1 : $\ker(F(h)) \to F(X)$ and π'_2 : $\ker(F(h)) \to F(X)$. Suppose there is a map i: $\ker(F(h)) \to F(\ker(h))$ such that the following diagram commutes:



Show that ker(h) is a bisimulation on (X, f).

(b) Consider the functor $F \colon \mathsf{Set} \to \mathsf{Set}$ defined on a set X by

$$F(X) = \{(x,y,z) \mid \operatorname{card}\{x,y,z\} \leq 2\}$$

where $\operatorname{card}\{x,y,z\}$ is the number of elements of $\{x,y,z\}$; F(X) consists of all triples of elements of X where at least two elements are equal. On a function f, the functor is defined by F(f)(x,y,z) = (f(x),f(y),f(z)). Show that any two states of a coalgebra for this functor are behaviourally equivalent.

- (c) Let F be the functor from the previous exercise. Give an F-coalgebra on the set 2 with the property that there is no bisimulation $R \subseteq 2 \times 2$ such that $(0,1) \in R$.
- (d) Let F be the functor from the previous two exercises. Show that bisimilarity on F-coalgebras is not transitive, in general.