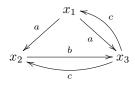
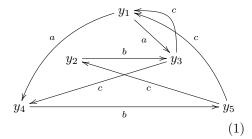
Exercises Coalgebra for Lecture 7

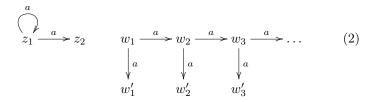
The exercises labeled with (*) are optional and more advanced.

- 1. For each of the following transition systems and given pairs of states, decide whether they are bisimilar or not (and justify your answer). Are they trace equivalent?
 - (a) x_1 and y_1 in:¹





(b) z_1 and w_1 in:



(c) u_1 and v_1 in:

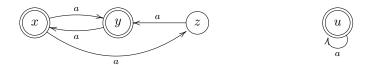
$$u_{1} \xrightarrow{a} u_{2} \xrightarrow{c} u_{3} \qquad v_{2} \qquad v_{4} \qquad (3)$$

$$a \left(\bigvee_{b} b \qquad b \left(\bigvee_{a} a \right) \right) a \qquad v_{1} \longrightarrow v_{3} \longrightarrow v_{5}$$

- 2. Let $\delta \colon X \to (\mathcal{P}(X))^A$ be a labelled transition system. The *trace semantics* tr: $X \to 2^{A^*}$ was defined in the lecture.
 - (a) Define a deterministic automaton $\langle o^{\sharp}, \delta^{\sharp} \rangle \colon \mathcal{P}(X) \to 2 \times (\mathcal{P}(X))^A$ such that the language accepted by a state $\{x\}$ is given by l(x).
 - (b) (*) Show that the above construction defines a functor from the category of transition systems (over A) to the category of deterministic automata (over A). What does this say about the relationship between bisimilarity and trace semantics?

 $^{^1\}mathrm{Exercise}$ taken from: D. Sangiorgi, Introduction to Bisimulation and Coinduction, Cambridge Universty Press.

3. Prove that x and u in the following non-deterministic automaton accept the same language, using determinisation and bisimulation.



- 4. Show that if two states of an LTS are bisimilar, then they are also trace equivalent.
- 5. In the lecture, we defined the determinisation of a non-deterministic automaton $\langle o, \delta \rangle \colon X \to 2 \times (\mathcal{P}_f(X))^A$ as the automaton $\langle o^{\sharp}, \delta^{\sharp} \rangle \colon \mathcal{P}_f(X) \to \mathcal{P}_f(X)$ $2 \times (\mathcal{P}_f(X))^A$ given by

$$o^{\sharp}(S) = \bigvee_{x \in S} o(x) \tag{4}$$

$$o^{\sharp}(S) = \bigvee_{x \in S} o(x)$$

$$\delta^{\sharp}(S)(a) = \bigcup_{x \in S} \delta(x)(a).$$
(4)

Let beh: $\mathcal{P}_f(X) \to 2^{A^*}$ be the language semantics of determinisation. Show that beh is a semilattice homomorphism, i.e., that $beh(\emptyset)(w) = 0$ and $beh(S \cup T)(w) = beh(S)(w) \vee beh(T)(w)$ for all $S, T \in \mathcal{P}_f(X)$ and $w \in A^*$.

- (a) Show that semilattices and semilattice homomorphisms form a category SL.
 - (b) Does SL have an initial object? And a final object? And products, coproducts?
 - (c) Show that there is a 'forgetful' functor $U: SL \to Set$, mapping a semilattice to the underlying set.
 - (d) (*) Let $F: \mathsf{Set} \to \mathsf{Set}$ be given by $F(X) = 2 \times X^A$. Show that there is a functor $\overline{F} \colon \mathsf{SL} \to \mathsf{SL}$ such that $U \circ \overline{F} = F \circ U$ (what does this mean, concretely)?
 - (e) (*) Let $G: \mathsf{Set} \to \mathsf{Set}$ be given by $G(X) = 2 \times (\mathcal{P}_f(X))^A$. Show that determinisation gives rise to a functor $\mathsf{CoAlg}(G) \to \mathsf{CoAlg}(\overline{F})$.