
Exercises Coalgebra for Lecture 11

The exercises labeled with (*) are optional and more advanced.

1. By 2 we denote the two-elements set 2 = {0, 1}. We define a (point-
wise) complement operator comp : 2ω → 2ω on binary streams as follows:
comp(σ)(n) = 1 iff σ(n) = 0, for all n. We’re going to define this as an
operation on coalgebras for the functor B : Set→ Set, B(X) = 2×X.

(a) Describe comp as an inference rule, just like we did for alt (Equation
(2) in the notes).

(b) Give a functor S : Set → Set which captures the syntax (a single
unary operator). Give a distributive law λ : SB ⇒ BS which cap-
tures the complement operator. Prove that your λ is indeed a natural
transformation.

(c) (*) Prove that your distributive law is correct. To this end, let
z : 2ω → 2 × 2ω be the final B-coalgebra. Just like in the lecture,
we use the distributive law λ to define the stream system on the left
below:

S(2ω)

S(z)

��

behλ // 2ω

z

��

S(2× 2ω)

λ2ω

��
2× S(2ω)

id2×behλ
// 2× 2ω

Show that the unique homomorphism behλ to the final coalgebra is
indeed comp.

2. A partial automaton is a coalgebra of the form 〈ε, δ〉 : X → 2× (X + 1)A,
where 1 = {∗}. For every state and alphabet symbol, we have either a
single next state, or no next state. The latter should just mean that no
more words with that letter in front should be accepted. (See the notes
for details.)

(a) Show, with a concrete example, that coalgebraic bisimilarity is differ-
ent from language equivalence in the above sense (where a transition
to ∗ just means no arrow).

(b) Define a determinisation procedure: for each partial automaton 〈ε, δ〉,
a deterministic automaton 〈ε], δ]〉, which makes the triangle on the

1



left commute. How should we define η?

X

〈ε,δ〉
��

ηX // X + 1

〈ε],δ]〉
xx

beh // P(A∗)

��
2× (X + 1)A

id×(beh)A
// 2× P(A∗)A

The coalgebra on the right is the final deterministic automaton; beh
is the unique coalgebra homomorphism to it. How does the language
semantics of the partial automaton arise in this picture?

(c) In the lecture, we’ve seen that we could capture determinisation of
non-deterministic automata by a distributive law and a monad. For
partial automata, we can play a similar game: we’d like to capture
〈ε], δ]〉 as a composition

S(X)
S(〈ε,δ〉) // SBS(X)

λSX // BSS(X)
B(µX) // BS(X)

where S(X) = X + 1 and B(X) = 2 × XA. What should µ and λ
be?

3. (*) In the very last part of the notes, we generalise the determinisation
picture a little. In particular, it is claimed that with a functor B : C → C,
a monad (T, η, µ) on C and a distributive law λ : TB ⇒ BT , we get a
functor T : CoAlg(BT )→ CoAlg(B), which lifts T .

(a) Prove this claim.

(b) Since this is a functor, it preserves homomorphisms. How about
bisimulations? What does this say, for instance, about determinisa-
tion of non-deterministic automata?

4. (*) In the lecture (and the notes), we’ve seen that, if B has a final coalge-
bra, then any λ : SB ⇒ BS defines an algebra on this final coalgebra, by
finality. Investigate the case that S has an initial algebra: can we define a
coalgebra on it using λ? What does this mean in a concrete example (for
instance, a few operations on streams)?

2


