Exercises Coalgebra for Lecture 12

The exercises labeled with (*) are optional and more advanced.

- 1. Consider the set \mathbb{N}^{ω} of streams over the natural numbers. Let $\mathsf{Rel}_{\mathbb{N}^{\omega}}$ be the lattice of relations $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ on streams over \mathbb{N} , ordered by inclusion.
 - (a) Define a function $b: \operatorname{\mathsf{Rel}}_{\mathbb{N}^{\omega}} \to \operatorname{\mathsf{Rel}}_{\mathbb{N}^{\omega}}$ which captures the stream bisimulations, in the sense that $R \in \operatorname{\mathsf{Rel}}_{\mathbb{N}^{\omega}}$ is a bisimulation iff $R \subseteq b(R)$. Show that your b is monotone (so $R \subseteq S$ implies $b(R) \subseteq b(S)$). What is the greatest fixed point of b?
 - (b) For $\sigma, \tau \in \mathbb{N}^{\omega}$, we say σ is lexicographically less than τ if either
 - i. σ and τ are equal, or
 - ii. σ and τ agree on the first *i* elements, for some *i*, and $\sigma(i) < \tau(i)$ (we start counting at 0, so this means the (i + 1)-th element of σ is strictly below the *i*-th element of τ).

Define a monotone function $b' \colon \mathsf{Rel}_{\mathbb{N}^{\omega}} \to \mathsf{Rel}_{\mathbb{N}^{\omega}}$ such that for any $\sigma, \tau \in \mathbb{N}^{\omega}$: σ is lexicographically less than τ if and only if (σ, τ) is contained in a relation R such that $R \subseteq b'(R)$.

2. Consider the following deterministic automaton.

Give a bisimulation up to equivalence that contains (x, u), but which has no more than four pairs in total.

3. Consider the following non-deterministic automaton.

- (a) Draw the determinisation of the automaton.
- (b) The pair ({x}, {u}) is contained in a bisimulation up to congruence (see the notes for the definition; in the lecture, we did an example). What is the smallest one you can find?

- 4. Let (P, \leq) be a partial order. An element $x \in P$ is called *top* if for all $y \in P$: $y \leq x$. An element $x \in P$ is called *bottom* if for all $y \in P$: $x \leq y$. We typically denote a top element, if it exists, by \top , and a bottom element by \perp .
 - (a) Show that bottom and top elements, if they exist, are unique.
 - (b) Show that, if P is a complete lattice, then it has top and bottom elements.
 - (c) Prove that (\mathbb{N}, \leq) , where \mathbb{N} is the set of natural numbers and \leq is the standard smaller or equal relation on numbers is a poset. Is it a complete lattice?
 - (d) Consider now $(\mathbb{N} \cup \{\infty\}, \leq')$, where \leq' is defined as:
 - for all $n \in \mathbb{N} \cup \{\infty\}$: $n \leq \infty$,
 - for all $n, m \in \mathbb{N}$: $n \leq m$ iff $n \leq m$.

Is $(\mathbb{N} \cup \{\infty\}, \leq')$ a poset? Is there a top element \top ? Is $(N \cup \{\infty\}, \leq')$ a complete lattice?

5. (*) Prove Knaster-Tarski's theorem: if $b: P \to P$ is a monotone function on a complete lattice P, then b has a greatest fixed point gfp(b), given by

$$\mathsf{gfp}(b) = \bigvee \{x \in P \mid x \le b(x)\}$$

There are some hints in the notes.

- 6. (*) Let $b, f: P \to P$ be monotone functions on a complete lattice. A function f is *b*-compatible if $f(b(x)) \leq b(f(x))$ for all $x \in X$. In the last part of the notes, it is briefly explained why compatible functions are interesting; here we'll look at a slightly different use of them.
 - (a) Show that, if f is b-compatible, then $f(\mathsf{gfp}(b)) \leq \mathsf{gfp}(b)$.
 - (b) Let $t: \operatorname{\mathsf{Rel}}_{A^{\omega}} \to \operatorname{\mathsf{Rel}}_{A^{\omega}}$ be the function defined by $t(R) = R \circ R$, where $R \circ R$ is the relational composition of R with itself. Show that t is *b*-compatible, where *b* is the function defined in the first part of Exercise 1.
 - (c) Similar question to the previous one, but with b replaced by b' from the second part of Exercise 1. What can you conclude about lexicographic order of streams, from (a)?