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Abstract. In component-based development, the correctness of a sys-
tem depends on the correctness of the individual components and on their
interactions. Model-based testing is a way of checking the correctness of
a component by means of executing test cases that are systematically
generated from a model of the component. This model should include
the behaviour of how the component can be invoked, as well as how the
component itself invokes other components. In many situations, how-
ever, only a model that specifies how others can use the component, is
available. In this paper we present an approach for model-based testing
of components where only these available models are used. Test cases
for testing whether a component correctly reacts to invocations are gen-
erated from this model, whereas the test cases for testing whether a
component correctly invokes other components, are generated from the
models of these other components. A formal elaboration is given in the
realm of labelled transition systems. This includes an implementation
relation, called eco, which formally defines when a component is correct
with respect to the components it uses, and a sound and exhaustive test
generation algorithm for eco.

1 Introduction

Software testing involves checking of desired properties of a software product
by systematically executing the software, while stimulating it with test inputs,
and observing and checking the execution results. Testing is a widely used tech-
nique to assess the quality of software, but it is also a difficult, error-prone,
and labor-intensive technique. Consequently, test automation is an important
area of research and development: without automation it will not be feasible to
test future generations of software products in an effective and efficient manner.
Automation of the testing process involves automation of the execution of test
cases, automation of the analysis of test results, as well as automation of the
generation of sufficiently many and valid test cases.

F.S. de Boer et al. (Eds.): FMCO 2006, LNCS 4709, pp. 1–25, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 L. Frantzen and J. Tretmans

Model-Based Testing. One of the emerging and promising techniques for
test automation is model-based testing. In model based testing, a model of the
desired behavior of the implementation under test (IUT) is the starting point for
test generation and serves as the oracle for test result analysis. Large amounts
of test cases can, in principle, be algorithmically and completely automatically
generated from the model. If this model is valid, i.e., expresses precisely what
the implementation under test should do, all these tests are valid, too. Model-
based testing has recently gained increased attention with the popularization of
modeling itself.

Most model-based testing methods deal with black-box testing of functional-
ity. This implies that the kind of properties being tested concern the functional-
ity of the system. Functionality properties express whether the system correctly
does what it should do in terms of correct responses to given stimuli, as opposed
to, e.g., performance, usability, or reliability properties. In black-box testing, the
specification is the starting point for testing. The specification prescribes what
the IUT should do, and what it should not do, in terms of the behavior observ-
able at its external interfaces. The IUT is seen as a black box without internal
detail, as opposed to white-box testing, where the internal structure of the IUT,
i.e., the program code, is the basis for testing. Also in this paper we will restrict
ourselves to black-box testing of functionality properties.

Model-based testing with labelled transition systems. One of the formal theo-
ries for model-based testing uses labelled transition systems as models, and a
formal implementation relation called ioco for defining conformance between
an IUT and a specification [10,11]. A labelled transition system is a structure
with states representing the states of the system, and with transitions between
states representing the actions that the system may perform. The implementa-
tion relation ioco expresses that an IUT conforms to its specification if the IUT
never produces an output that cannot be produced by the specification. In this
theory, an algorithm for the generation of test cases exists, which is provably
sound for ioco-conformance, i.e., generated test cases only detect ioco errors,
and exhaustive, i.e., all potential ioco errors can be detected.

Testing of Components. In component-based development, systems are built
by gluing components together. Components are developed separately, often by
different manufacturers, and they can be reused in different environments. A
component is responsible for performing a specific task, or for delivering a spec-
ified service. A user requesting this service will invoke the component to provide
its service. In doing so, the component may, in turn, invoke other components
for providing their services, and these invoked components may again use other
components. A component may at the same time act as a service provider and
as a service requester.

A developer who composes a system from separate components, will only know
about the services that the components perform, and not about their internal
details. Consequently, clear and well-specified interfaces play a crucial role in
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component technology, and components shall correctly implement these inter-
face specifications. Correctness involves both the component’s role as a service
provider and its role as a service requester: a component must correctly provide
its specified service, as well as correctly use other components.

Component-based testing. In our black-box setting, component-based testing
concerns testing of behavior as it is observed at the component’s interfaces. This
applies to testing of individual components as well as to testing of aggregate
systems built from components, and it applies to testing of provided services, as
well as to testing of how other services are invoked.

When testing aggregated systems this can be done ”bottom-up”, i.e., starting
with testing the components that do not invoke other components, and then
adding components to the system that use the components already tested, and so
forth, until the highest level has been reached. Another approach is to use stubs
to simulate components that are invoked, so that a component can be tested
without having the components available that are invoked by the component
under test.

Model-based testing of components. For model-based testing of an individual
component, we, in principle, need a complete model of the component. Such a
model should specify the behavior at the service providing interface, the behavior
at the service requesting interface, and the mutual dependencies between actions
at both interfaces. Such a complete model, however, is often not available. Spec-
ifications of components are usually restricted to the behavior of the provided
services. The specification of how other components are invoked is considered
an internal implementation detail, and, from the point of view of a user of an
aggregate system, it is.

Goal. The aim of this paper is to present an approach for model-based testing of
a component at both the service providing interface and the requesting interface
in a situation where a complete behavior model is not available. The approach
assumes that a specification of the provided service is available for both the
component under test, and for the components being invoked by the component
under test. Test cases for the provided service are derived from the corresponding
service specification. Test cases for checking how the component requests services
from other components are derived from the provided service specifications of
these other components.

The paper builds on the ioco-test theory for labelled transition systems, it
discusses where this theory is applicable for testing components, and where it is
not. A new implementation relation is introduced called environmental confor-
mance – eco. This relation expresses that a component correctly invokes another
component according to the provided service specification of that other compo-
nent. A complete (sound and exhaustive) test generation algorithm for eco is
given.

Overview. Section 2 starts with recalling the most important concepts of the
ioco-test theory for labelled transition systems, after which Section 3 sets the
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scene for formally testing components. The implementation relation eco is intro-
duced in Section 4, followed by the test generation algorithm in Section 5. The
combination of testing at different interfaces is briefly discussed in Section 6.
Concluding remarks are presented in Section 7.

2 Testing for Labelled Transition Systems

Model-based testing deals with models, correctness (or conformance-) relations,
test cases, test generation algorithms, and soundness and exhaustiveness of the
generated test cases with respect to the conformance relations. This section
presents the formal test theory for labelled transition systems using the ioco-
conformance relation; see [10,11]. This theory will be our starting point for the
discussion of model-based testing of components in the next sections.

Models. In the ioco-test theory, formal specifications, implementations, and test
cases are all expressed as labelled transition systems.

Definition 1. A labelled transition system with inputs and outputs is a 5-
tuple 〈Q, LI , LU , T, q0〉 where Q is a countable, non-empty set of states; LI is a
countable set of input labels; LU is a countable set of output labels, such that
LI ∩ LU = ∅; T ⊆ Q × (LI ∪ LU ∪ {τ}) × Q, with τ /∈ LI ∪ LU , is the transition
relation; and q0∈Q is the initial state.

The labels in LI and LU represent the inputs and outputs, respectively, of a
system, i.e., the system’s possible interactions with its environment1. Inputs are
usually decorated with ‘?’ and outputs with ‘!’. We use L = LI ∪ LU when we
abstract from the distinction between inputs and outputs.

The execution of an action is modeled as a transition: (q, μ, q′)∈T expresses
that the system, when in state q, may perform action μ, and go to state q′ . This is
more elegantly denoted as q μ−−→ q′. Transitions can be composed: q μ−−→ q′ μ′

−−→ q′′,
which is written as q μ·μ′

−−−→ q′′.
Internal transitions are labelled by the special action τ (τ /∈ L), which is

assumed to be unobservable for the system’s environment. Consequently, the
observable behavior of a system is captured by the system’s ability to perform
sequences of observable actions. Such a sequence of observable actions, say σ, is
obtained from a sequence of actions under abstraction from the internal action
τ , and it is denoted by σ=⇒ . If, for example, q a·τ ·τ ·b·c·τ−−−−−−−→ q′ (a, b, c∈L), then we
write q

a·b·c===⇒ q′ for the τ -abstracted sequence of observable actions. We say that
q is able to perform the trace a·b·c∈L∗. Here, the set of all finite sequences over
L is denoted by L∗, with ε denoting the empty sequence. If σ1, σ2∈L∗ are finite
sequences, then σ1·σ2 is the concatenation of σ1 and σ2. Some more, standard
notations and definitions are given in Definitions 2 and 3.

1 The ‘U’ refers to ‘uitvoer’, the Dutch word for ‘output’, which is preferred for his-
torical reasons, and to avoid confusion between LO (letter ‘O’) and L0 (digit zero).



Model-Based Testing of Environmental Conformance of Components 5

Definition 2. Let p = 〈Q, LI , LU , T, q0〉 be a labelled transition system with
q, q′∈Q, μ, μi∈L ∪ {τ}, a, ai∈L, and σ∈L∗.

q μ−−→ q′ ⇔def (q, μ, q′)∈T
q μ1·...·μn−−−−−−→ q′ ⇔def ∃q0, . . . , qn : q = q0

μ1−−→ q1
μ2−−→ . . . μn−−→ qn = q′

q μ1·...·μn−−−−−−→ ⇔def ∃q′ : q μ1·...·μn−−−−−−→ q′

q
μ1·...·μn−−−−−−−→/ ⇔def not ∃q′ : q μ1·...·μn−−−−−−→ q′

q
ε=⇒ q′ ⇔def q = q′ or q τ ·...·τ−−−−→ q′

q
a=⇒ q′ ⇔def ∃q1, q2 : q

ε=⇒ q1
a−→ q2

ε=⇒ q′

q
a1·...·an======⇒ q′ ⇔def ∃q0 . . . qn : q = q0

a1==⇒ q1
a2==⇒ . . .

an==⇒ qn = q′

q
σ=⇒ ⇔def ∃q′ : q

σ=⇒ q′

q
σ

=⇒ ⇔def not ∃q′ : q
σ=⇒ q′

In our reasoning about labelled transition systems we will not always distinguish
between a transition system and its initial state. If p = 〈Q, LI , LU , T, q0〉, we will
identify the process p with its initial state q0, and, e.g., we write p

σ=⇒ instead
of q0

σ=⇒ .

Definition 3. Let p be a (state of a) labelled transition system, P a set of states,
A ⊆ L a set of labels, and σ∈L∗.

1. traces(p) =def { σ∈L∗ | p
σ=⇒ }

2. p after σ =def { p′ | p
σ=⇒ p′ }

3. P after σ =def
⋃

{ p after σ | p∈P }
4. P refuses A =def ∃p∈P, ∀μ∈A ∪ {τ} : p

μ−−→/

The class of labelled transition systems with inputs in LI and outputs in LU is
denoted as LTS(LI , LU ). For technical reasons we restrict this class to strongly
converging and image finite systems. Strong convergence means that infinite
sequences of τ -actions are not allowed to occur. Image finiteness means that the
number of non-deterministically reachable states shall be finite, i.e., for any σ,
p after σ shall be finite.

Representing labelled transition systems. To represent labelled transition systems
we use either graphs (as in Fig. 1), or expressions in a process-algebraic-like
language with the following syntax:

B ::= a ; B | i ; B | Σ B | B |[ G ]| B | P

Expressions in this language are called behavior expressions, and they define
labelled transition systems following the axioms and rules given in Table 1.

In that table, a∈L is a label, B is a behavior expression, B is a countable set
of behavior expressions, G ⊆ L is a set of labels, and P is a process name, which
must be linked to a named behavior expression by a process definition of the
form P := BP . In addition, we use B1 � B2 as an abbreviation for Σ{B1, B2} ,
stop to denote Σ ∅ , ‖ as an abbreviation for |[ L ]| , i.e., synchronization on
all observable actions, and ||| as an abbreviation for |[ ∅ ]| , i.e., full interleaving
without synchronization.
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Table 1. Structural operational semantics

a ;B a−→ B i ;B τ−→ B
B

μ−→ B′

Σ B μ−→ B′ B∈B, μ∈L ∪ {τ}

B1
μ−→ B′

1

B1 |[ G ]| B2
μ−→B′

1 |[ G ]| B2

B2
μ−→ B′

2

B1 |[ G ]| B2
μ−→B1 |[ G ]| B′

2
μ∈(L∪{τ})\G

B1
a−→ B′

1, B2
a−→ B′

2

B1 |[ G ]| B2
a−→B′

1 |[ G ]| B′
2

a∈G
BP

μ−→ B′

P
μ−→ B′ P := BP , μ∈L∪{τ}

Input-output transition systems. In model-based testing there is a specification,
which prescribes what an IUT shall do, and there is the IUT itself which is a
black-box performing some behavior. In order to formally reason about the IUT’s
behavior the assumption is made that the IUT behaves as if it were some kind of
formal model. This assumption is sometimes referred to as the test assumption
or test hypothesis.

In the ioco-test theory a specification is a labelled transition system in
LTS(LI , LU ). An implementation is assumed to behave as if it were a labelled
transition system that is always able to perform any input action, i.e., all inputs
are enabled in all states. Such a system is defined as an input-output transi-
tion system. The class of such input-output transition systems is denoted by
IOTS(LI , LU ) ⊆ LTS(LI , LU ).

Definition 4. An input-output transition system is a labelled transition system
with inputs and outputs 〈Q, LI , LU , T, q0〉 where all input actions are enabled in
any reachable state:

∀σ, q : q0
σ=⇒ q implies ∀a∈LI : q

a=⇒

A state of a system where no outputs are enabled, and consequently the system
is forced to wait until its environment provides an input, is called suspended, or
quiescent. An observer looking at a quiescent system does not see any outputs.
This particular observation of seeing nothing can itself be considered as an event,
which is denoted by δ (δ /∈ L ∪ {τ}); p δ−→ p expresses that p allows the obser-
vation of quiescence. Also these transitions can be composed, e.g., p

δ·?a·δ·?b·!x========⇒
expresses that initially p is quiescent, i.e., does not produce outputs, but p does
accept input action ?a, after which there are again no outputs; when then input
?b is performed, the output !x is produced. We use Lδ for L ∪ {δ}, and traces
that may contain the quiescence action δ are called suspension traces.

Definition 5. Let p = 〈Q, LI , LU , T, q0〉∈LTS(LI , LU ).

1. A state q of p is quiescent, denoted by δ(q), if ∀μ∈LU ∪ {τ} : q
μ−−→/
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2. pδ =def 〈 Q, LI , LU ∪ {δ}, T ∪ Tδ, q0 〉,
with Tδ =def { q δ−→ q | q∈Q, δ(q) }

3. The suspension traces of p are Straces(p) =def { σ∈L∗
δ | pδ

σ=⇒ }

From now on we will usually include δ-transitions in the transition relations, i.e.,
we consider pδ instead of p, unless otherwise indicated. Definitions 2 and 3 also
apply to transition systems with label set Lδ.

The implementation relation ioco. An implementation relation is intended to
precisely define when an implementation is correct with respect to a spec-
ification. The first implementation relation that we consider is ioco, which
is abbreviated from input-output conformance. Informally, an implementation
i∈IOTS(LI , LU ) is ioco-conforming to specification s∈LTS(LI , LU ) if any ex-
periment derived from s and executed on i leads to an output (including quies-
cence) from i that is foreseen by s. We define ioco as a special case of the more
general class of relations iocoF , where F ⊆ L∗

δ is a set of suspension traces,
which typically depends on the specification s.

Definition 6. Let q be a state in a transition system, Q be a set of states,
i∈IOTS(LI , LU ), s∈LTS(LI , LU ), and F ⊆ (LI ∪ LU ∪ {δ})∗, then

1. out(q) =def { x∈LU | q x−−→ } ∪ { δ | δ(q) }
2. out(Q) =def

⋃
{ out(q) | q∈Q }

3. i iocoF s ⇔def ∀σ∈F : out( i after σ ) ⊆ out( s after σ )
4. i ioco s ⇔def i iocoStraces(s) s

!liq

?but

k1

?but

k2 k3

!liq

?but

!choc

?but
l0

l1

l3

l2

l4

l5

!liq

?but

?but

?but

!choc

?but

?but ?but

Fig. 1. Example labelled transition systems

Example 1. Figure 1 presents three examples of labelled transition systems mod-
eling candy machines. There is an input action for pushing a button ?but , and
there are outputs for obtaining chocolate !choc and liquorice !liq : LI = {?but}
and LU = {!liq , !choc}.

Since k1, k2∈IOTS(LI , LU ) they can be both specifications and implemen-
tations; k3 is not input-enabled, and can only be a specification. We have that
out( k1 after ?but ) = {!liq} ⊆ {!liq , !choc} = out( k2 after ?but ); so we get now
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k1 ioco k2, but k2 /ioco k1. For k3 we have out( k3 after ?but ) = {!liq , δ} and
out( k3 after ?but ·?but ) = {!choc}, so both k1, k2 /ioco k3.

The importance of having suspension actions δ in the set F over which ioco
quantifies is also illustrated in Fig. 2. It holds that out( r1 after ?but ·?but ) =
out( r2 after ?but ·?but ) = {!liq, !choc}, but we have out( r1 after ?but ·δ·?but ) =
{!liq , !choc} ⊃ {!choc} = out( r2 after ?but ·δ·?but ). So, without δ in these traces
r1 and r2 would be considered implementations of each other in both directions,
whereas with δ, r2 ioco r1 but r1 /ioco r2.

Underspecification and the implementation relation uioco. The implementation
relation ioco allows to have partial specifications. A partial specification does not
specify the required behavior of the implementation after all possible traces. This
corresponds to the fact that specifications may be non-input enabled, and inclu-
sion of out-sets is only required for suspension traces that explicitly occur in the
specification. Traces that do not explicitly occur are called underspecified. There
are different ways of dealing with underspecified traces. The relation uioco does
it in a slightly different manner than ioco. For the rationale consider Example 2.

Example 2. Consider k3 of Fig. 1 as a specification. Since k3 is not input-enabled,
it is a partial specification. For example, ?but ·?but ·?but is an underspecified
trace, and any implementation behavior is allowed after it. On the other hand,
?but is clearly specified; the allowed outputs after it are !liq and δ. For the trace
?but ·?but the situation is less clear. According to ioco the expected output
after ?but ·?but is out( k3 after ?but ·?but ) = {!choc}. But suppose that in the
first ?but -transition k3 moves nondeterministically to state l1 (the left branch)
then one might argue that the second ?but -transition is underspecified, and that,
consequently, any possible behavior is allowed in an implementation. This is
exactly where ioco and uioco differ: ioco postulates that ?but ·?but is not an
underspecified trace, because there exists a state where it is specified, whereas
uioco states that ?but ·?but is underspecified, because there exists a state where
it is underspecified.

Formally, ioco quantifies over F = Straces(s), which are all possible suspension
traces of the specification s. The relation uioco quantifies over F = Utraces(s) ⊆
Straces(s), which are the suspension traces without the possibly underspecified
traces, i.e., all suspension traces σ of s for which it is not possible that a prefix
σ1 of σ (σ = σ1·a·σ2) leads to a state of s where the remainder a·σ2 of σ is
underspecified, that is, a is refused.

Definition 7. Let i∈IOTS(LI , LU ), and s∈LTS(LI , LU ).

1. Utraces(s) =def { σ∈Straces(s) | ∀σ1, σ2∈L∗
δ, a∈LI :

σ = σ1·a·σ2 implies not s after σ1 refuses {a} }
2. i uioco s ⇔def i iocoUtraces(s) s

Example 3. Because Utraces(s) ⊆ Straces(s) it is evident that uioco is not
stronger than ioco. That it is strictly weaker follows from the following example.
Take k3 in Fig. 1 as a (partial) specification, and consider r1 and r2 from Fig. 2 as
potential implementations. Then r2 /ioco k3 because !liq∈out(r2 after ?but ·?but )
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!liq

?but

r1

?but

?but

?but

?but

!choc

?but ?but

!liq
?but

!liq

r2

!choc

?but

?but

?but

?but

?but

?but

?but

/ioco

ioco

Fig. 2. More labelled transition systems

and !liq /∈ out( k3 after ?but ·?but ). But r2 uioco k3 because we have ?but ·?but /∈
Utraces(k3). Also r1 /ioco k3, but in this case also r1 /uioco k3. The reason for
this is that we have ?but ·δ·?but∈Utraces(k3), !liq∈out( r1 after ?but ·δ·?but ) and
!liq /∈ out( k3 after ?but ·δ·?but ).

Test Cases. For the generation of test cases from labelled transition system spec-
ifications, which can test implementations that behave as input-output transition
systems, we must first define what test cases are. Then we discuss what test ex-
ecution is, what it means to pass a test, and which correctness properties should
hold for generated test cases so that they will detect all and only non-conforming
implementations. A test generation algorithm is not given in this section; for ioco
anduioco test generation algorithms we will refer to other publications. In Sect. 5,
this paper will give a test generation algorithm for the new implementation rela-
tion eco for component conformance, which will be defined in Sect. 4.

A test case is a specification of the behavior of a tester in an experiment
carried out on an implementation under test. The behavior of such a tester is
also modeled as a special kind of input-output transition system, but, naturally,
with inputs and outputs exchanged. Consequently, input-enabledness of a test
case means that all actions in LU (i.e., the set of outputs of the implementation)
are enabled. For observing quiescence we add a special label θ to the transition
systems modeling tests (θ /∈ L).

Definition 8. A test case t for an implementation with inputs LI and outputs
LU is an input-output transition system 〈Q, LU , LI ∪{θ}, T, q0〉∈IOTS(LU , LI ∪
{θ}) generated following the next fragment of the syntax for behavior expressions,
where pass and fail are process names:

t ::= pass
| fail
| Σ { x ; t | x∈LU ∪ {a} } for some a∈LI

| Σ { x ; t | x∈LU ∪ {θ} }
where pass := Σ { x ; pass | x∈LU ∪ {θ} }

fail := Σ { x ; fail | x∈LU ∪ {θ} }
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The class of test cases for implementations with inputs LI and outputs LU is
denoted as T TS(LU , LI). For testing an implementation, normally a set of test
cases is used. Such a set is called a test suite T ⊆ T TS(LU , LI).

Test Execution. Test cases are run by putting them in parallel with the imple-
mentation under test, where inputs of the test case synchronize with the outputs
of the implementations, and vice versa. Basically, this can be modeled using the
behavior-expression operator ‖ . Since, however, we added the special label θ
to test cases to test for quiescence, this operator has to be extended a bit, and
is then denoted as �| .

Because of nondeterminism in implementations, it may be the case that testing
the same implementation with the same test case may lead to different test
results. An implementation passes a test case if and only if all its test runs lead
to a pass state of the test case. All this is reflected in the following definition.

Definition 9. Let t∈T TS(LU , LI) and i∈IOTS(LI , LU ).

1. Running a test case t with an implementation i is expressed by the parallel

operator �| : T TS(LU , LI) × IOTS(LI , LU ) → LTS(LI ∪ LU ∪ {θ}) which

is defined by the following inference rules:

i
τ−→ i′

t�| i τ−→ t�| i′
t

a−→ t′, i
a−→ i′

t�| i a−→ t′�| i′ a∈LI ∪ LU
t

θ−→ t′, i
δ−→

t�| i θ−→ t′�| i
2. A test run of t with i is a trace of t�| i leading to one of the states pass or

fail of t:

σ is a test run of t and i ⇔def ∃i′ : t�| i σ=⇒pass�| i′ or t�| i σ=⇒ fail�| i′

3. Implementation i passes test case t if all test runs go to the pass-state of t:

i passes t ⇔def ∀σ∈L∗
θ, ∀i′ : t�| i

σ

=⇒ fail�| i′

4. An implementation i passes a test suite T if it passes all test cases in T :

i passes T ⇔def ∀t∈T : i passes t

If i does not pass a test case or a test suite, it fails.

Completeness of testing. For ioco-testing a couple of algorithms exist that can
generate test cases from labelled transition system specifications [10,12,8]. These
algorithms have been shown to be correct, in the sense that the test suites
generated with these algorithms are able to detect all, and only all, non-ioco
correct implementations. This is expressed by the properties of soundness and
exhaustiveness. A test suite is sound if any test run leading to fail indicates
an error, and a test suite is exhaustive if all possible errors in implementations
can be detected. Of course, exhaustiveness is merely a theoretical property: for
realistic systems exhaustive test suites would be infinite, both in number of test
cases and in the size of test cases. But yet, exhaustiveness does express that
there are no ioco-errors that are undetectable.
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Definition 10. Let s be a specification and T a test suite; then for ioco:

T is sound ⇔def ∀i∈IOTS(LI , LU ) : i ioco s implies i passes T
T is exhaustive ⇔def ∀i∈IOTS(LI , LU ) : i ioco s if i passes T

3 Towards Formal Component-Based Testing

Correctness of components. In component-based testing we wish to test com-
ponents. A component is a (software) entity that provides some service to a
potential user. A user can invoke, or request this service. The service is pro-
vided via some interface of the component, referred to as the service interface,
providing interface, called interface, or upper interface. A component, in turn,
may use other components in its environment, i.e., the component acts as a user
of, or requests a service from another component, which, in turn, provides that
service. The services provided by these other components are requested via an-
other interface, to which we refer as required interface, calling interface, or lower
interface; see Fig. 3(a).

For a service requester it is transparent whether the component i invokes
services of other environmental components, like k, at its lower interface, or not.
The service requester is only interested whether the component i provides the
requested service at the service interface in compliance with its specification s.

On the other hand, the environmental component k that is being invoked via
the lower interface of i, does not care about the service being provided by the
component i. It only cares whether the component i correctly requests for the
services that the environmental component k provides, according to the rules
laid down in k’s service specification e.

Yet, although the correctness requirements on the behavior of a component
can be clearly split into requirements on the upper interface and requirements on
the lower interface, the correctness of the whole component, naturally, involves
correct behavior on both interfaces. Moreover, the behavior of the component
on both interfaces is in general not independent: a service request to an envi-
ronmental component at the lower interface is typically triggered by a service
request at the upper interface, and the result of the latter depends on the result
of the first.

When specifying components, the emphasis is usually on the specification of
the provided service, since this is what the component must fulfill and what a user
of the component sees. The component’s behavior at the lower interface is often
not specified. It can only be indirectly derived from what the environmental
component expects, i.e., from the provided service specification of that used
component. In this paper we will formalize model-based testing of components at
their lower interface using the upper interface specification of the environmental
component that is invoked. By so doing, we strictly split the requirements on
the lower interface from the requirements on the upper interface, since this is
the only passable way to go when only specifications of the provided services are
available.
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Fig. 3. Component-based testing

This is also the approach of recent, service-oriented testing frameworks like
audition [2]. This framework assumes behavioral specifications of the provided
service interfaces. Based on these specifications, a testing phase is introduced
when services ask for being published at a service registry – the service under-
goes a monitored trial before being put “on stage”. During this testing phase,
the service under test is actively tested at its upper interface, and it is addi-
tionally tested, whether the service correctly invokes other services via its lower
interface.
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If, instead, one wants to take requirements on the interdependency between
the interfaces into account, more complete specifications are needed. This is not
treated in this paper. For a survey of component-based testing see [9,6].

Formalizing components. We will formalize the behavior of component services
in the realm of labelled transition systems. Fig. 3(a) gives a first step towards
the formalization of these concepts. The component under consideration is a
component implementation denoted by i; i is an input-output transition system,
or, more precisely, the implementation i, which is seen as a black-box, is assumed
to behave as an input-output transition system (cf. Section 2: test assumption).
The actions that can occur at the upper interface are inputs L↑

I and outputs L↑
U ,

whereas L↓
I and L↓

U represent the inputs and outputs, respectively, at the lower
interface. Thus i∈IOTS(L↑

I ∪ L↓
I , L

↑
U ∪ L↓

U ).
The service to be provided by the component at the upper interface is specified

by s, which only involves the upper interface: s∈LTS(L↑
I , L

↑
U ). The behavior of

the provided service of the environmental component used by i is specified by
e∈LTS(L↓

U , L↓
I), and implemented by k∈IOTS(L↓

U , L↓
I). Only the actions at the

lower interface of i, which correspond to the actions of the upper interface of the
invoked environmental component k, but with inputs and outputs exchanged, are
involved here. Of course, the environmental component, in turn, may have a lower
interface via which it will invoke yet other components, but for the component
i, being just a service requester for e, this is transparent. In addition, in realistic
situations i will usually request services from several different components, but
we restrict our discussion to only one service being called. Considering several
environmental components can in this setting, for instance, be expressed as their
parallel (interleaved) composition, leading again to a single component.

Typically, input actions at the upper interface model the request for, i.e., the
start of a service, whereas output actions model the result provided by that
service. Conversely, at the lower interface the output actions model requests to
an environmental component, whereas input actions model the results provided
by the environmental component.

Testing components. A component can be tested in different ways. The simplest,
and often used way is to test at the upper interface as in Fig. 3(b). This leads
to a ”bottom-up” test strategy, where the components that do not invoke other
components, are tested first. After this, components are added that use these
already tested components, so that these subsystems can be tested, to which
then again components can be added, until all components have been added
and tested. In principle, this way of testing is sufficient in the sense that all
functionality that is observable from a service requester (user) point of view is
tested. There are some disadvantages of this testing method, though. The first
is that the behavior at the lower interface of the component is not thoroughly
tested. This apparently did not lead to failures in the services provided (because
these were tested), but it might cause problems when a component is replaced
by a new or other (version of the) component, or if a component is reused in
another environment. For instance, one environmental component may be robust
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enough to deal with certain erroneous invocations, whereas another component
providing the same service is not. If now the less forgiving one substitutes the
original one, the system may not operate anymore. This would affect some of the
basic ideas behind component-based development, viz., that of reusability and
substitutability of components. A second disadvantage is that this test strategy
leads to a strict order in testing of the components, and to a long critical test
path. Higher level components cannot be tested before all lower level components
have been finished and tested.

Fig. 3(c) shows an alternative test strategy where a lower level component is
replaced by a stub or a simulator. Such a stub simulates the basic behavior of the
lower level component, providing some functionality of e, typically with hard-
coded responses for all requests which i might make on e. The advantage is that
components need not to be tested in a strict bottom-up order, but still stubs
are typically not powerful enough to guarantee thorough testing of the lower
interface behavior of a component, in particular concerning testing of abnormal
behavior or robustness. Moreover, stubs have to be developed separately.

The most desirable situation for testing components is depicted in Fig. 3(d): a
test environment as a wrapper, or ”horse-shoe”, around the component with the
possibility to fully control and observe all the interfaces of the component. This
requires the development of such an environment, and, moreover, the availability
of behavior specifications for all these interfaces. The aim of this paper is to work
towards this way of testing in a formal context with model-based testing.

Model-based testing of components. For model-based testing of a component in a
horse-shoe we need, in principle, a complete model of the behavior of the compo-
nent specified at all its interfaces. But, as explained above, the specification of a
component is usually restricted to the behavior at its upper interface. We indeed
assume the availability of a specification of the upper interface of the component
under test: s∈LTS(L↑

I , L
↑
U ). Moreover, instead of having a specification of the

lower interface itself, we use the specification of the upper interface of the en-
vironmental component that is invoked at the lower interface: e∈LTS(L↓

U , L↓
I).

This means that we are not directly testing what the component under test
shall do, but what the environmental component expects it to do. Besides, what
is missing in these two specifications, and what is consequently also missing in
the model-based testing of the component, are the dependencies between the
behaviors at the upper and the lower interfaces.

For testing the behavior at the upper interface the ioco- or uioco-test theory
with the corresponding test generation algorithms can directly be used: there is
a formal model s∈LTS(L↑

I , L
↑
U ) from which test cases can be generated, and the

implementation is assumed to behave as an input-enabled input-output transi-
tion system; see Sect. 2. Moreover, the implementation relations ioco and uioco
seem to express what is intuitively required from a correct implementation at the
upper interface: each possible output of the implementation must be included in
the outputs of the specification, and also quiescence is only allowed if the speci-
fication allows that: a service requester would be disappointed if (s)he would not
get an output result if an output is guaranteed in the specification.
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For testing the behavior at the lower interface this testing theory is not di-
rectly applicable: there is no specification of the required behavior at the lower
interface but only a specification of the environment of this lower interface:
e∈LTS(L↓

U , L↓
I). This means that we need an implementation relation and a

test generation algorithm for such environmental specifications. An issue for
such an implementation relation is the treatment of quiescence. Whereas a ser-
vice requester expects a response when one is specified, a service provider will
usually not care when no request is made when this is possible, i.e., the provider
does not care about quiescence, but if a request is received it must be a correct
request. In the next section we will formally elaborate these ideas, and define
the implementation relation for environmental conformance eco. Subsequently,
Sect. 5 will present a test generation algorithm for eco including soundness and
exhaustiveness, and then Section 6 will briefly discuss the combined testing at
the upper- and lower interfaces thus realizing a next step in the ”horse-shoe”
approach.

4 Environmental Conformance

In this section the implementation relation for environmental conformance eco
is presented. Referring to Fig. 3(d) this concerns defining the correctness of the
behavior of i at its lower interface with respect to what environment specification
e expects. Here, we only consider the lower interface of i that communicates
with the upper interface of e (or, more precisely, with an implementation k of
specification e). Consequently, we use LI to denote the inputs of i at its lower
interface, which are the outputs of e, and LU to denote the outputs if i at its
lower interface, which correspond to the inputs of e. The implementation i is
assumed to be input enabled: i∈IOTS(LI , LU ); e is just a labelled transition
system with inputs and outputs: e∈LTS(LU , LI).

An implementation i can be considered correct with respect to an environment
e if the outputs that i produces can be accepted by e, and, conversely, if the
outputs produced by e can be accepted by i. Since i is assumed to be input
enabled, the latter requirement is trivially fulfilled in our setting. Considering
the discussion in Sect. 3, quiescence of i is not an issue here, and consequently
it is not considered as a possible output: if i requests a service from e it should
do so in the correct way, but i is not forced to request a service just because
e is ready to accept such a request. Conversely, quiescence of e does matter.
The implementation i would be worried if the environment would not give a
response, i.e., would be quiescent, if this were not specified. This, however, is an
issue of the correctness of the environment implementation k with respect to the
environment specification e, which is not of concern for eco.

For the formalization of eco we first have to define the sets of outputs (without
quiescence), and inputs of a labelled transition system. Note that the set of
outputs after a trace σ, uit( p after σ ), collects all outputs that a system may
nondeterministically execute, whereas for an input to be in in( p after σ ) it
must be executable in all nondeterministically reachable states (cf. the classical
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may- and must -sets for transition systems [4]). This is justified by the fact that
outputs are initiated by the system itself, whereas inputs are initiated by the
system’s environment, so that acceptance of an input requires that such an
input is accepted in all possible states where a system can nondeterministically
be. The thus defined set of inputs is strongly related to the set of Utraces (Def. 7
in Sect. 2), a fact that will turn out to be important for proving the correctness
of test generation in Sect. 5.

Definition 11. Let q be (a state of) an LTS, and let Q be a set of states.

1. in(q) =def { a∈LI | q
a=⇒ }

2. in(Q) =def
⋂

{ in(q) | q∈Q }
3. uit(q) =def { x∈LU | q

x=⇒ }
4. uit(Q) =def

⋃
{ uit(q) | q∈Q }

Proposition 1

1. in( q after σ ) = { a∈LI | not q after σ refuses {a} }
2. uit( q after σ ) = out( q after σ )\{ δ }
3. Utraces(p) = { σ∈Straces(s) | ∀σ1, σ2∈L∗

δ , a∈LI :
σ = σ1·a·σ2 implies a∈in( p after σ1 ) }

Using these definitions we define eco: it expresses that after any possible Utrace
(without quiescence) of the environment e the outputs that implementation i
may produce shall be specified inputs in all possible states that e may (nonde-
terministically) reach.

Definition 12. Let i∈IOTS(LI , LU ), e∈LTS(LU , LI).

i eco e ⇔def ∀σ∈Utraces(e) ∩ L∗ : uit( i after σ ) ⊆ in( e after σ )

Now we have the desired property that after any common behavior of i and e, or
of i and k, their outputs are mutually accepted as inputs. As mentioned above,
some of these properties are trivial because our implementations are assumed to
be input-enabled (we take the ”pessimistic view on the environment”, cf. [1]).

Definition 13. p∈LTS(LI , LU ) and q∈LTS(LU , LI) are mutually receptive iff
∀σ∈L∗, ∀x∈LU , ∀a∈LI , ∀p′, q′ we have

p ‖ q
σ=⇒ p′ ‖ q′ implies ( p′ !x==⇒ implies q′ ?x==⇒ )

and q′ !a==⇒ implies p′ ?a==⇒ ) )

Proposition 2. Let i∈IOTS(LI , LU ), e∈LTS(LU , LI), k∈IOTS(LU , LI).

1. i eco e implies i and e are mutually receptive
2. i eco e and k uioco e implies i and k are mutually receptive
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Fig. 4. Exemplifying eco

Example 4. To illustrate the eco implementation relation, a simple function-
ality of a warehouse component is given in Fig. 4 (top left). For a provided
item and quantity the warehouse component reports either !instock or !soldout.
A supplier component now may use this warehouse component to answer re-
quests of customers. Such a supplier implementation must be input enabled for
the outputs of the warehouse (!instock and !soldout). It communicates via its
lower interface with the warehouse. The figure shows three supplier implemen-
tations; supplier1 never sends any message to the warehouse, it is just input
enabled for the possible messages sent from the warehouse. This is fine, we have
supplier1 eco warehouse, because eco does not demand a service requester to
really interact with an environmental component. The only demand is that if
there is communication with the warehouse, then this must be according to the
warehouse specification.

Bottom left gives supplier2. To keep the figures clear, a non-labelled self-loop
implicitly represents all input labels that are not explicitly specified, to make
a system input-enabled. Here, the service implementer forgot to also inform
the warehouse of the desired quantity, just the item is passed and then either
an ?instock or ?soldout is expected. What will happen is that supplier2 will
not get any answer from the warehouse after having sent the !item message
since the warehouse waits for the ?quant message – both wait in vain. In other
words, supplier2 observes quiescence of the warehouse. The warehouse does
not observe anything since quiescence is not an observation in eco. Thus, also
here we have supplier2 eco warehouse, since this supplier does never sent a
wrong message to the warehouse. That the intended transaction (requesting the
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warehouse for an item and quantity, and receiving an answer) is not completed
does not matter here; see also Sect. 6: Limitations of eco.

Finally, in supplier3 the implementer confused the order of the messages
to be sent to the warehouse: instead of sending the ?item first and then the
?quant it does it in the reverse order. Here the specification is violated since we
have uit( supplier3 after ε ) = {!quant} and in(warehouse after ε ) = {?item}.
Hence we get !quant /∈ {?item}, and we have supplier3 eco warehouse.

5 Test Generation

Having a notion of correctness with respect to an environmental component,
as expressed by the environmental conformance relation eco, our next step is
to generate test cases for testing implementations according to this relation.
Whereas for ioco (and uioco) test cases are derived from a specification of the
implementation under test, test cases for eco are not derived from a specifica-
tion of the implementation but from a specification of the environment of the
implementation. The test cases generated from this environment e should check
for eco-conformance, i.e., they should check after all Utraces σ of the environ-
ment, whether all outputs produced by the implementation i – uit( i after σ ) –
are included in the set of inputs – in( e after σ ) – of e.

Algorithm 1 (eco test generation). Let e∈LTS(LU , LI) be an environmen-
tal specification, and let E be a subset of states of e, such that initially E =
e after ε .

A test case t∈T TS(LU , LI) is obtained from a non-empty set of states E by
a finite number of recursive applications of one of the following three nondeter-
ministic choices:

1.

LU ∪ θ

pass

t := pass
2.

fail

xj /∈ in(E)

fail

xi∈in(E)

ta txi

xj

tx1

xi

a

x1

t := a ; ta
� Σ { xj ; fail | xj∈LU , xj /∈ in(E) }
� Σ { xi ; txi | xi∈LU , xi∈in(E) }

where a∈LI is an output of e, such that E after a = ∅, ta is obtained by
recursively applying the algorithm for the set of states E after a , and for
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each xi∈in(E), txi is obtained by recursively applying the algorithm for the
set of states E after xi .

3.

fail fail

θ

xi∈in(E) xj /∈ in(E)

tx1 txi tθ

xjxi
x1

t := Σ { xj ; fail | xj∈LU , xj /∈ in(E) }
� Σ { xi ; txi | xi∈LU , xi∈in(E) }
� θ ; tθ

where for each xi∈in(E), txi is obtained by recursively applying the algorithm
for the set of states E after xi , and tθ is obtained by repeating the algorithm
for E.

Algorithm 1 generates a test case from a set of states E. This set represents
the set of all possible states in which the environment can be at the given stage of
the test case generation process. Initially, this is the set e after ε = e0 after ε ,
where e0 is the initial state of e. Then the test case is built step by step. In each
step there are three ways to make a test case:

1. The first choice is the single-state test case pass, which is always a sound
test case. It stops the recursion in the algorithm, and thus terminates the
test case.

2. In the second choice test case t attempts to supply input a to the imple-
mentation, which is an output of the environment. Subsequently, the test
case behaves as ta. Test case ta is obtained by recursive application of the
algorithm for the set E after a , which is the set of environment states that
can be reached via an a-transition from some current state in E. Moreover,
t is prepared to accept, as an input, any output xi of the implementation,
that might occur before a has been supplied. Analogous to ta, each txi is
obtained from E after xi , at least if xi is allowed, i.e., xi∈in(E).

3. The third choice consists of checking the output of the implementation. Only
outputs that are specified inputs in in(E) of the environment are allowed;
other outputs immediately lead to fail. In this case the test case does not
attempt to supply an input; it waits until an output arrives, and if no output
arrives it observes quiescence, which is always a correct response, since eco
does not require to test for quiescence.

Now we can state one of our main results: Algorithm 1 is sound and exhaustive,
i.e., the generated test cases only fail with non-eco-conforming implementations,
and the test suite consisting of all test cases that can be generated detects all
non-eco-conforming implementations.
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Fig. 5. An eco test case derived from the warehouse specification

Theorem 2. Let i∈IOTS(LI , LU ), e∈LTS(LU , LI), and let Te ⊆ TTS(LU , LI)
be the set of all test cases that can be generated from e with Algorithm 1, then
we have

1. Soundness: i eco e implies ∀t∈Te : i passes t
2. Exhaustiveness: i /eco e implies ∃t∈Te : i fails t

Example 5. We continue with Example 4 and Fig. 4, and give an eco-test case
derived by Algorithm 1 from the warehouse specification; see Fig. 5. At the
beginning, no input can be applied to the implementation since no outputs are
specified in the initial state of the warehouse. Note that for the warehouse we
have inputs LU = {?item, ?quant} and outputs LI = {!instock, !soldout}, and
that an output from the warehouse is an input to the implementation. First, the
third option of the algorithm is chosen (checking the outputs of the implemen-
tation). Because ?quant is not initially allowed by the warehouse this leads to
a fail. Observing quiescence (θ) is always allowed, and the test case is chosen
to stop afterwards via a pass (first option). After observing ?item the test case
continues by again observing the implementation outputs. Because ?item is not
allowed anymore, since ?item /∈ in(warehouse after ?item ), this leads here to
a fail. After ?quant is observed, again the third option is chosen to observe
outputs. Now only quiescence is allowed since there is no implementation out-
put specified in the set in(warehouse after ?item·?quant ). Finally, the second
option is chosen (applying an input to the implementation). Both !instock and
!soldout are possible here. The input !instock to i is chosen, and then the test
case is chosen to end with pass.
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6 Combining Upper and Lower Interface Testing

For testing the behavior at the lower interface of a component implementation i,
we proposed the implementation relation eco in Sect. 4 with corresponding test
generation algorithm in Sect. 5. For testing the behavior at the upper interface we
proposed in Sect. 3 to use one of the existing implementation relations uioco or
ioco with one of the corresponding test generation algorithms; see Sect. 2. Since
uioco is based on Utraces like eco, whereas ioco uses Straces, it seems more
natural and consistent to choose uioco here. Some further differences between
uioco and ioco were discussed in Examples 2 and 3; more can be found in [3].

Now we continue towards testing the whole component implementation in the
”horse-shoe” test architecture of Fig. 3(d). This involves concurrently testing for
uioco-conformance to the provided service specification s at the upper interface,
and for eco-conformance to the environment specification e at the lower inter-
face. Here, we only indicate some principles and ideas by means of an example,
and by discussing the limitations of eco. A more systematic treatment is left for
further research.

!cancel

fullsupplier

?ware2

supplier

?ware1

!ware1 ?confirm
?cancel

?cancel
θ

pass pass

fail fail
?confirm

fail

test case tu

!confirm
!cancel

!item

!quant

!cancel?ware1

?soldout?instock

!confirm

?ware2

Fig. 6. An upper supplier specification, an implementation covering both interfaces,
and an upper-interface test case

The specifications of the upper and lower interfaces are more or less indepen-
dent, and can be considered as acting in a kind of interleaving manner (it is “a
kind of” interleaving because s specifies i directly, and e specifies the environ-
ment of i, which implies that it does not make sense to just put s ||| e, using the
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parallel operator ||| of Sect. 2). This independence also holds for the derived
test cases: we can generate the upper and lower test cases independently from s
and e, respectively, after which they can be combined in a kind of interleaving
manner. We will show this in Example 6.

Example 6. Fig. 6 shows in supplier a specification of the upper interface of a
supplier component. This supplier can handle two different warehouses, and
requests whether items are in stock. This is done by indicating the favored
warehouse via a ?ware1 or ?ware2 message at the upper interface. The supplier
is supposed to query the indicated warehouse and either return !confirm if the
item is in stock, or !cancel otherwise. We abstract from modeling the specific
items since this does not add here.

A supplier implementation called fullsupplier is given at the right-hand side
of the figure. This supplier is connected at its lower interface with a warehouse
component as being specified in Fig. 4. Its label sets are: L↑

I = {?ware1, ?ware2},
L↑

U = {!confirm, !cancel}, L↓
I = {?instock, ?soldout}, L↓

U = {!item, !quant}.
Here we deal with both the upper and the lower interface, therefore the

fullsupplier must be input enabled for both input sets L↑
I and L↓

I . For some
reason this supplier cannot deal with a second warehouse, that is why it al-
ways reports !cancel when being invoked via ?ware2. For ?ware1 it contacts the
warehouse component, and behaves as assumed.

Fig. 6 also shows a uioco-test case tu for the upper interface; Fig. 5 specified
an eco-test case for the lower interface. Now we can test the fullsupplier in
the horse-shoe test architecture by executing both test cases concurrently, in
an interleaved manner. Fig. 7 shows the initial part of such a test case. After
!ware1·?item·?quant it can be continued with lower-interface input !instock af-
ter which either ?confirm or ?cancel shall be observed by the test case. We
deliberately did not complete this test case as a formal structure in Fig. 7, since
there are still a couple of open questions, in particular, how to combine quies-
cence observations in an ”interleaved” manner: is there one global quiescence for
both interfaces, or does each interface have its own local quiescence? Analogous
questions occur for mioco, which is a variant of ioco for multiple channels [7].

Limitations of eco. It is important to note that we are talking here only about
local conformance at the upper and lower interfaces, and not about complete cor-
rectness of the component implementation i. The latter is not possible, simply,
because we do not have a complete specification for i. In particular, as was al-
ready mentioned in the introduction, the dependencies between actions occurring
at the upper and lower interfaces are not included in our partial specifications
s and e. And where there is no (formal) specification of required behavior there
will also be no test to check that behavior.

For instance, in Example 6 the fullsupplier relates the ware1 input at its
upper interface with a query at the warehouse component at its lower interface.
This relation is invisible to eco and uioco/ioco. In other words, it is not pos-
sible to test requirements like “the supplier must contact a specific warehouse
component when, and only when being invoked with message ?ware1”. In Fig. 7,
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Fig. 7. Initial part of a combined test case

this is reflected in the sequence of actions !ware1·?confirm, which necessar-
ily leads to pass; there is no way to guarantee that the warehouse was really
queried. In general, requirements like “the supplier queries the right warehouse
with the right product” are not testable when only independent specifications of
both interfaces are available.

Another noteworthy feature of eco is that quiescence cannot be observed by
environmental components for several theoretical and practical reasons. For in-
stance, it is not straightforward anymore to indirectly measure quiescence via
timeouts here. This again means that a component can always choose to stop
communicating with an environmental component. This is not always the desired
behavior, since usually a chain of exchanged messages corresponds to a trans-
action that should be entirely performed. For instance, the warehouse from
Example 4 only gives an answer (!instock or !soldout) when being queried with
first ?item and then ?quant. Hence, the transaction that the warehouse offers, is
“send first an item followed by a quantity, and then the availability is returned”.
To enforce such transactions, the environmental component must be able to ob-
serve quiescence at certain steps within the transaction. For instance, after the
reception of ?item the requesting service must not be quiescent, it must send
?quant. Future research might allow to define a transaction-specific notion of
quiescence which allows to test also for transactional behavior.

7 Conclusions

When testing a component, standard testing approaches only take the provided
interface into account. This is due to the fact that usually only a specification
of that interface is available. How the component interacts with environmental
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components at its lower interface is not part of the test interest. By so doing, it
is not possible to test if a component obeys the specifications of its environment.
This is particularly problematic when this misbehavior at the lower interface
does not imply an erroneous behavior at the upper interface.

We have introduced a new conformance relation called eco which allows to
test the lower interface based on specifications of the provided interfaces of the
environment. Together with the sound and exhaustive test generation algorithm,
this allows to detect such malpractice.

Another important aspect is that a tester for eco can be automatically gen-
erated from the provided service specifications. In other words, it is possible to
generate fully automatic replacements of components which behave according
to their specification. This is very useful when implementations of such compo-
nents are not yet available, or if for reasons like security or safety, a simulated
replacement is preferred. The audition framework for testing Web Services [2]
is currently instantiated with a test engine which combines symbolic versions
of the ioco [5] and eco techniques to allow for sophisticated testing of Service
Oriented Architectures.

Modeling and testing components which interact with their environment is
not a trivial extension of the standard testing theories like ioco for reactive
systems. In this paper we pursued the most simple and straightforward path
to gain a testing theory which allows for basic testing of both the upper and
the lower interface of a component. Though, there are still open questions on
how to fully combine eco with, for instance, uioco or ioco on the level of
combined specifications and test generation. This should lead to a notion of
correctness at the upper interface which takes the lower interface into account.
For instance, a deadlock at the lower interface (waiting for a message from an
environmental component which never comes) does propagate to quiescence at
the upper interface. Also, enriching the lower interface with the ability to observe
quiescence of the environment is conceivable.

Finally, important concepts for components are reusability and substitutabil-
ity. On a theoretical level these correspond to the notions of (pre-)congruences.
It was already shown in [3] that without additional restrictions ioco is not a
precongruence, yet for component based development it is desirable that such
properties do hold. More investigations are necessary in this respect, e.g., in-
spired by the theory of interface automata [1] were such notions like congruence,
replaceability, and refinement are the starting point.
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