
Client-Server Password Recovery
(Extended Abstract)

 Lukasz Chmielewski1 Jaap-Henk Hoepman1,2 Peter van Rossum1

1 Digital Security Group
Radboud University Nijmegen, the Netherlands

{lukaszc,jhh,petervr}@cs.ru.nl
2 TNO Information and Communication Technology, The Netherlands

jaap-henk.hoepman@tno.nl

Abstract. Human memory is not perfect – people constantly memorize
new facts and forget old ones. One example is forgetting a password, a
common problem raised at IT help desks. We present several protocols
that allow a user to automatically recover a password from a server using
partial knowledge of the password. These protocols can be easily adapted
to the personal entropy setting [7], where a user can recover a password
only if he can answer a large enough subset of personal questions.
We introduce client-server password recovery methods, in which the re-
covery data are stored at the server, and the recovery procedures are
integrated into the login procedures. These methods apply to two of the
most common types of password based authentication systems. The secu-
rity of these solutions is significantly better than the security of presently
proposed password recovery schemes. For our protocols we propose a
variation of threshold encryption [5, 8, 17] that might be of independent
interest.

Key words: password recovery, threshold encryption scheme, private comput-
ing, personal entropy

1 Introduction

People constantly memorize new facts, but also forget old ones. One quite com-
mon example is forgetting a password. It is one of the most common problem
raised at IT help-desks. Therefore, many systems for password recovery (PR)
have been built. The common aim of all these systems is to provide reliable solu-
tions for legitimate users to recover lost passwords or to receive a new password
(i.e., resetting the old password), without significantly increasing the vulnerabil-
ity against attackers.

The simplest way to authenticate the user is to use an out-of-band channel,
like a phone call, or show up physically at a system administrator. This is costly
however, and cumbersome. More user-friendly, but less secure, is the common
method used by many websites that store the password of the user in the clear
and resend it to the user’s email address on request. Sometimes websites require
a user to answer some personal question, like “what is your mother’s maiden
name?”. However, this method is insecure because a password sent in cleartext
can be easily intercepted and it is relatively easy to answer such a single question.

Another widely used method to cope with forgetting passwords is a password
reset system. In this system when a user forgets the password then the server sets

a new password and emails the new password to the client (again maybe after
answering a personal question). Now the legitimate user can regain system access
easily. However, the security of this system depends heavily on the security of the
email server, and therefore, this system is uninteresting from our point of view.

There is quite a lot of research on more sophisticated PR methods that do not
fully trust the server. One approach is to use secret sharing [2,18]. This solution
divides a password into n shares (that are stored on trusted servers) in such a
way that for the reconstruction, it is necessary to collect at least a threshold t
of these shares. However, the user still needs to authenticate somehow to the
servers, and therefore this system does not fully solve our problem.

In [7] a PR system, based on personal entropy, is proposed. In this system, a
user is asked some questions about his personal history during password registra-
tion. The system generates a random secret key, and encrypts the real password
with it. Subsequently, the answers given by the user are used to “encrypt” the
random secret key. The user then stores the questions, the “encryption” of the
secret value, and the encryption of the password on his computer. A secret
sharing scheme is used to enable password recovery, even if some questions are
answered incorrectly. The drawback of this scheme is the lack of a rigorous se-
curity analysis. In fact, [3] demonstrates a serious weakness of this scheme: with
the parameters recommended for a security level of 2112, the system is in fact
vulnerable to an attack that requires only 264 operations.

The ideas from [7] were improved in [9]. This improved password recovery
uses error-correcting codes instead of a secret sharing scheme. A rigorous security
analysis is performed in the chosen model. The solution of [9] uses techniques
that are very close to secure sketches.

Secure sketches and fuzzy extractors (described e.g., in [6]), and their robust
versions [12,15], are cryptographic tools useful for turning noisy information into
cryptographic keys and securely authenticating biometric data. They may also
be used to solve the password recovery problem. However, contrary to intuition,
it seems hard to use these cryptographic primitives to solve password recovery
in our most secure model, as show in Section 5.

We believe that [7, 9] are a significant step towards a practical PR solution.
However, such so-called local PR systems are vulnerable to attackers that steal
the recovery data from the user’s machine (which is quite often inadequately
secured) and then mount an offline brute force attack to recover the password.
To avoid this scenario, we introduce client-server password recovery, in which the
recovery data should be stored at the server, and PR should be integrated into
the login procedure. In such a setting (under the more reasonable assumption
that the recovery data cannot be stolen from the secure server) an attacker can
only perform an online brute force attack. Security then can be increased by
limiting the number of tries per account, or increasing the response time.

Our contributions are the following. Firstly, we introduce the password re-
covery problem and the client-server PR security model, together with a short
analysis of password authentication systems, in Section 2. All our client-server
PR systems apply to a simple (low entropy) password login system. In all these

PASSWORD REGISTRATION:
Client (login, p = p1, . . . pn; pi ∈ D): Server (database DT):
1) Chooses a cyclic group G with gener-
ator g, like in Section 4. (q, g, gh(p)) → 2) STORE(DT, (login, q, g, gh(p)))

LOG IN:
Client (login, p′ = p′1, . . . p

′
n; p′i ∈ D): Server (database DT):

1) login → 2) (q, g, d) = LOOK-UP(DT, login);
← 3) Chooses random b = gc and sends it.

4) bh(p′) → 5) If bh(p′) = dc then ACCEPT else REJECT

Fig. 1. challenge-response password authentication system

PR systems, the client is stateless, and all recovery data is stored at the server.
Our solutions reduce the entropy somewhat, but are still more secure than other
approaches. Moreover, our ideas can be straightforwardly applied to the per-
sonal entropy system, as shown in Subsection 2.2, making the recovery phase
more secure. We elaborate on using secure sketches and fuzzy extractors for PR
in Section 5. Subsequently, we present a new algorithm (Section 3) for local PR
that is based on intraceability Assumption 2 from [14]. In Section 4, we introduce
a new variant of threshold encryption [5,8,17], called equivocal threshold encryp-
tion, that does not provide validity proofs for the decryption shares. Combining
these two, we present protocols for client-server PR integrated into two classes
of systems for password based login: the most common, hash based one in which
the server keeps hashes of passwords but receives cleartext passwords during
the login phase (Section 6), and the most secure solution, based on challenge
response, in which the server never sees passwords in clear at all (Section 7).
Moreover, in Appendix A we briefly present a simple substring-knowledge PR
working in the challenge response setting. Furthermore, all our password recov-
ery systems can be easily modified to work as password reset systems. Due to
space constraints we omit these easy transformations.

Due to space constraints in this version of the paper, proofs of security and
correctness of the presented protocols are short and informal.

2 Password Recovery Security Model

In this section we discuss the kinds of password authentication (PA) systems for
which we consider password recovery, define exactly what we mean by password
recovery, and talk about the kinds of adversaries our protocols need to withstand.

2.1 Password Authentication (PA) Systems

Two kinds of participants are involved in PA systems: users (also called clients)
and servers. Clients have a username (also called login) and a password
p=p1, . . . pn, where pi ∈ D and D is the domain of characters of passwords (D
is usually small, e.g., |D| ≈ 100). For simplicity, we assume that clients always
remember their logins, and that the length of the password n is fixed for all users.

Initially, a client registers himself (in the registration phase) with the server
by submitting a username and an authenticator (derived from the password),
which the server stores in its database. Subsequently, the client can authenticate
(in the log in phase) to the server using his username and a proof of knowledge
of the password. The server, using the authenticator from the database, and the
proof of knowledge, can efficiently verify that the user knows the corresponding
password. We distinguish three different PA schemes with respect to the security
requirements. These systems differ in the way that authenticators and proofs of
knowledge are defined: an authenticator can be equal to a password, a proof
can be equal to a password (this is the case in hash based systems, where the
server stores hashes of passwords), or neither of the above (which is the case for
challenge-response type systems, an example of which is presented in Figure 1).

The password recovery for the first system is trivial (because the server stores
passwords in clear), and we omit it in this paper. The PR solutions for the other
two PA systems are presented in Sections 6 and 7, respectively.

2.2 Client-Server Password Recovery (PR)

A system for client-server PR has the same participants and log in routine as a
PA system. Moreover, it provides an additional routine called password recovery
(PR), in which the client tries to recover the lost password. The password reg-
istration is also modified: besides submitting the login, and the authenticator,
it also submits the recovery data. The client’s input in the PR phase is login
and a perturbed (incorrect) password p′=p′1, . . . p

′
n, while the server’s input is

the database with the logins and the registration data. Local password recovery
is similar to client-server password recovery, except that the recovery data is
stored locally at the client, and the recovery protocol is run locally at the client.

The requirement is that the client recovers the password, if and only if,
p′ is similar to the password p corresponding to his login. To be precise, we
define similarity between strings x and y as x ≈t y (x matches y), if and only if,
t ≤ |{i ∈ {1, . . . n} : xi = yi}|. We assume that the parameters n and t are public.

Note, that having partial knowledge of the password is a very similar recovery
condition to the personal entropy one [7, 9]. In the personal entropy system the
client needs to answer some threshold of questions (i.e., t out of n questions) to
recover the password. The answers to the questions can be considered as an addi-
tional password, where every single answer can be treated as a letter. It is easy to
transform our systems to work with an auxiliary password, and therefore, with
personal questions. We skip these straightforward transformations in this paper.

We develop our protocols based on the following assumptions. We assume
existence of the secure channels between the server and clients (which can
be achieved using TLS connections). We work in the Random Oracle Model
(ROM) [1], which means that we assume that hash functions work like random
functions. Moreover, we often use message authentication codes (MACs), that
we implement using keyed hash functions of the form h : {0, 1}k×D→ F, where
F is a field. The first parameter of h is a random string of length k (the security
parameter). For simplicity, we often omit this parameter in our descriptions.

We look for efficient protocols, i.e., O(nk), at the server side (because many
clients might want to perform password recovery simultaneously), but we do
allow a certain time penalty at the client side.

2.3 Adversaries and Security Requirements

All our client-server protocols defend against an adversary impersonating a
client. Such an adversary is computationally bounded by k (but not by n log |D|)
and is malicious [11], which means he can disobey the protocols routine. This
adversary tries to break a server’s privacy that can be informally defined as fol-
lows. The impersonator, after any number of unsuccessful PR runs, can recover
more information about the password, than following from the fact that the PR
invocations failed, only with a negligible probability in k. Notice however, that
this adversary can always perform an online brute force attack on the PR routine
(even using the password’s distribution). But this is easily mitigated by adding
timeouts or allowing only a fixed number of tries before blocking an account.

We also consider an adversary accessing the server’s database in all our client-
server protocols. We model this adversary differently than the one impersonating
client, because this adversary can perform offline brute force attack using the PR
routine. Therefore, we define the adversary to not know the password distribution
and to be computationally bounded with respect to k and the parameters n, t,
|D| (in a way that the problem from Assumption 3.1 is hard). The adversary
tries to break a client’s privacy that can be informally, defined as follows. For
every two passwords p′ and p′′, the corresponding two PR data instances are
indistinguishable. An adversary accessing local PR (see Section 3) is defined in
the same way.

Only the challenge-response protocol (Section 7) is resistant against a fully
corrupted server. The adversary corrupting the server is computationally bounded
by k and tries to gain information about client’s password guesses from the data
received in PR runs. We assume that this adversary is malicious in the sense,
that he performs any actions to break the guesses privacy. However, there is no
point for him to alter the client’s output: the client can easily verify correctness
of the recovery by logging in. This approach is very similar to private computa-
tion from [14]. The guesses privacy can be defined as follows: from a PR run the
adversary gains negligible knowledge about the client’s guess.

3 Local Password Recovery

As explained in the introduction, a client of local password recovery, similarly
to [7, 9], keeps the recovery data on his machine (there is no server). The client
generates the recovery data and later on, tries to recover the lost password from
the password guess and the recovery data. In Figure 2 we present a solution for
local PR. Its security is based on the following intraceability assumption derived
from [14], which is related to the polynomial list reconstruction problem.

The intraceability assumption. Let Ct,αn,m denote the probability of distribu-
tion of sets generated in the following way:

Password Registration: The input is p = p1, . . . pn, where pi ∈ D, and |D| = m.
The client:

1. Generates v ∈R {0, 1}k, and n values {h1(p1), . . . hn(pn)}. Every hi is a MAC
with implicit first parameter v as described in Section 2.2.

2. Generates n random values s1, . . . sn ∈ F in such a way that points
{(h1(p1), s1), . . . (hn(pn), sn)} define a polynomial P of degree t−1, and P (0)=p.

3. Returns: PR=(v, {s1−g1(p1), . . . sn−gn(pn))}; each gi is a similar MAC to hi.

Password Recovery: The input is: p′ = p′1, . . . p
′
n, PR = (v, {s′1, . . . s′n}).

1. The client computes set S = {(h1(p′1), s′1 + g1(p′1)), . . . (hn(p′n), s′n + gn(p′n))}.
2. The client tries to reconstruct P from any subset of t elements of S (that is

`
n
t

´
checks). He checks whether for any potentially recovered polynomial P ′ the fol-
lowing holds (let p′′=P ′(0)): p′′ ≈t p′ and {(h1(p′′1), s′1+g1(p′′1)), . . . (hn(p′′n), s′n+
gn(p′′n))} defines a polynomial of degree n. If it holds then he outputs p′′. If it
does not hold for any P ′ then the client outputs ∅.

Fig. 2. Local Password Recovery

1. Pick a random polynomial P over F (denote |F| = f), of degree at most t,
such that P (0) = α.

2. Generate nm random values x1, . . . xnm ∈ F subject to the constraint that
all xi are distinct and different from 0.

3. Choose a random subset S of n different indexes in {1, . . . nm}, and set
yi = P (xi) for all i ∈ S. For every i 6∈ S set yi to be a random value in F.

4. Partition the nm (xi, yi) pairs in n random subsets subject to the fol-
lowing constraints. Firstly, the subsets are disjoint. Secondly, each subset
contains exactly one pair whose index is in S (hence yi = P (xi)) and ex-
actly m − 1 pairs whose indexes are not in S. We denote these subsets as
Si = {(x(i,j), y(i,j))}. Output the resulting subsets.

The intractability assumption states that for any α, α′ the two probability en-
sembles Ct,αn,m, Ct,α

′

n,m are computationally indistinguishable depending on the pa-
rameters f , t, m, and n.

Assumption 3.1 (Assumption 2 from [14]) Let k be a security parameter,
and let n(k), m(k), t(k), f(k) be at least linear polynomially bounded functions
that define the parameters n, m, t and f . Let Ct,αn,m and Ct,α′n,m be random variables
that are chosen according to the distributions Ct,αn,m and Ct,α

′

n,m, respectively. Then
it holds that for every α, α′ ∈ F, the probability ensembles Ct,αn,m and Ct,α′n,m are
computationally indistinguishable.

In our applications the assumption’s parameters are set as follows: n and t like
in PR, m = |D| and F = Zq, where q is large prime. One may argue that n, t and
|D| are relatively small parameters (e.g., n is the length of passwords) and that
they might not deliver good security to the system. However, notice that in the
personal entropy setting (i.e., the question-answer setting) the parameters can
be significantly enlarged. Moreover, we are not aware of any algorithm solving

the assumption problem (i.e., finding α) in our setting faster than by guessing t
proper points.

We are conscious that for similar problems there exist fast solutions. For
example, if in the above problem all x(i,j) = i then the problem can be solved
fast (see [3, 4]). However, these fast algorithms do not solve the problem from
Assumption 3.1, as stated in [14].

The local PR solution. Now we describe the protocol. In the first step
the client prepares PR data: v and {s1 − g1(p1), . . . sn − gn(pn)}, such that
{(h1(p1), s1), . . . , (hn(pn), sn)} define a polynomial P of degree t − 1, for which
P (0) = p. Here, hi, gi are hash functions (see Figure 2). Afterwards, the client
forgets the password, and tries to recover it from S = {(h1(p1), s1 − g1(p1) +
g1(p′1)), . . . , (hn(pn), sn−gn(pn)+gn(p′n))}. If p ≈t p′ then he obtains in S at least
t proper points belonging to P , and can derive the password P (0). Otherwise,
informally speaking, the client needs to solve the problem from Assumption 3.1.

Theorem 3.2 (Local PR Security). An adversary A attacking PR from Fig-
ure 2 first produces two passwords p0, p1, and sends them to an oracle. Then the
oracle chooses b ∈R {0, 1}, performs password registration for pb, and sends the
result back. Finally, A outputs his guess of b.

A succeeds with some probability 1
2 +a. We denote his advantage as a. Work-

ing in ROM, no A having non-negligible advantage exits under Assumption 3.1.

Proof (sketch). Assume to the contrary that there exists an adversary A, that
attacks our local PR with non-negligible advantage. Using A, we construct an
adversary A∗ that breaks Assumption 3.1. Firstly, A sends p0, p1 to A∗. A∗ for-
wards them to an intraceability oracle (corresponding to Assumption 3.1). This
oracle chooses b ∈R {0, 1}, and answers with n subsets Si = {(x(i,j), y(i,j))} sam-
pled from Ct,pb

n,|D|. Now A∗ sends to A: v ∈R {0, 1}k, and n random points in F:
{r1, . . . rn}. A∗ defines random oracles (representing hi and gi) in the following
way: for all j ∈ D and i ∈ {1, . . . n}: ROhi

(j)=x(i,j) and ROgi
(j)=y(i,j) − ri.

A∗ outputs the result of A. Notice, the importance of the implicit random pa-
rameter v, which lets random oracles, for two different PR runs, have different
outputs (even for the same password).

Because of working in ROM, the distribution of A’s input, created in such a
way by A∗ for pb, is identical to the distribution of the client’s input created in
password registration (from Figure 2) for pb. Therefore, A∗’s advantage is equal
to A’s advantage, and Assumption 3.1 is broken. ut

4 Equivocable Threshold Cryptosystem

In this section we define an equivocable threshold encryption (TE) scheme, and
we present a slightly modified threshold ElGamal scheme (based on [17], and the
“normal” ElGamal scheme [10]) that is equivocable. Subsequently, in Sections 6
and 7 we use this scheme to solve the PR problem.

In [8] a standard TE scheme consists of the following components. A key
generation algorithm KG takes as input a security parameter k, the number of

decryption servers n, the threshold parameter t and randomness; it outputs a
public key pk, a list α1, . . . αn of private keys, and a list vk1, . . . vkn of verification
keys. An encryption algorithm Enc takes as input the public key pk, randomness
and a plaintext m; it outputs a ciphertext c. A share decryption algorithm SD
takes as input the public key pk, an index i ∈ {1, . . . n}, the private key αi and
a ciphertext c; it outputs a decryption share ci (called also partial decryption)
and a proof of its validity pri. Finally, a combining algorithm CM takes as
input the public key pk, a ciphertext c, a list c1, . . . cn of decryption shares,
a list vk1, . . . vkn of verification keys, and a list pr1, . . . prn of validity proofs.
It performs decryption using any subset of {c1, . . . cn} of size t, for which the
corresponding proofs are verified. If there is no such set then CM fails.

An equivocable TE scheme consists of the same components as above, but:
KG does not produce verification keys, SD does not produce validity proofs,
and validity proofs are not part of CM ’s input. Therefore, CM simply checks if
a decryption is possible for any subset ci1 , . . . cit (that is

(
n
t

)
checks).

A secure equivocable TE scheme should fulfill the standard TE security def-
inition called threshold CPA [8]. Notice, that omitting validity proofs does not
help a malicious combiner to decrypt, because he possesses less data than for
standard TE. A secure equivocable TE scheme moreover has the following prop-
erties. After any number of CM invocations, a malicious combiner (which does
not know any secret shares) gains no information about: (1) the plaintexts in un-
successful runs (semantic security) and (2) the shares used in unsuccessful runs
for producing partial decryptions. We formalize this intuition in Definition 4.1.

Definition 4.1 (Equivocable Security). Define an oracle O. Firstly, O per-
forms algorithm KG (for the parameters stated above). Then O can be accessed
by the following procedures:
S(m); returns: an encryption c of m, and correct decryption shares c1, . . . cn.
I(m, i1, . . . it−1), where i1, . . . it−1 ∈ {1, . . . n} and |{i1, . . . it−1}| = t − 1; pro-
duces an encryption c of m, and x1, . . . xn, where xi = ci = SD(pk, i, αi, c) if
i ∈ {i1, . . . it−1}, and xi = SD(pk, i, ri, c) (where ri is a random value) other-
wise; returns c, x1, . . . xn.
F (m); returns c, SD(pk, 1, r1), . . . SD(pk, n, rn, c); every ri is a random value.

First game (corresponds to property 1):
1. O invokes KG, and sends a public key to a malicious combiner C1.
2. C1 sends a message m to the oracle O, which returns S(m). This step is

repeated as many times as the combiner wishes.
3. C1 chooses m0,m1 and sends them to the oracle.
4. C1 chooses i1, . . . it−1 ∈ {1, . . . n}, and sends them to O, which chooses b ∈R
{0, 1}. Then O sends back I(mb, i1, . . . it−1). This step is repeated as many
times as the combiner wishes.

5. C1 repeats Step 2, and finally, outputs his guess of b.
No polynomial time adversary C1 guesses b with a non-negligible advantage.

Second game (corresponds to property 2):
1. O invokes KG, and sends a public key to a malicious combiner C2.
2. The same like Step 2 of C1.

3. C2 chooses m and sends it to the oracle.
4. C2 chooses i1, . . . it−1 ∈ {1, . . . n}, and sends them to O, which chooses b ∈R
{0, 1}. Then O sends back I(m, i1, . . . it−1) if b = 0, and F (m) otherwise.
This step is repeated as many times as the combiner wishes.

5. C2 repeats Step 2, and finally, outputs his guess of b.
No polynomial time adversary C2 guesses b with a non-negligible advantage.

4.1 ElGamal Equivocable TE Scheme

In this section we introduce our version of the ElGamal scheme and prove that
this version is securely equivocable.

Let G =<g> denote a finite cyclic (multiplicative) group of prime order q
for which the Decision Diffie-Hellman (DDH) problem is assumed to be infea-
sible: given gα, gβ , gγ , where either gγ ∈R G (∈R means that a value is chosen
uniformly at random from a set) or αβ = γ mod q, it is infeasible to decide
whether αβ = γ mod q. This implies that the computation Diffie-Hellman prob-
lem, which is to compute gαβ given gα, gβ ∈R G, is infeasible as well. In turn,
this implies that the Discrete Log problem, which is to compute logg h = α given
gα ∈R G, is infeasible. We use the group G defined as the subgroup of quadratic
residues modulo a prime p, where q = (p−1)/2 is also a large prime. This group
is believed to have the above properties.

In the ElGamal scheme the public key consists of q, a generator g of G, and
h = gα, while the private key is α ∈ {0, . . . q− 1}. For this public key, a message
m ∈ G is encrypted as a pair (a, b) = (gr,mhr), with r ∈R Zq. Encryption
is multiplicatively homomorphic: given encryptions (a, b), (a′, b′) of messages
m,m′, respectively, an encryption of m ∗ m′ is obtained as (a, b) ∗ (a′, b′) =
(aa′, bb′) = (gr+r

′
,m ∗m′ ∗ hr+r′). Given the private key α = logg h, decryption

of (a, b) = (gr,mhr) is performed by calculating b/aα = m.
ElGamal semantic security can be defined using the following game. An or-

acle first sends pk = (q, g, h) to an adversary. Then the adversary sends plain-
texts m0,m1 ∈ G to the oracle, which answers, for b ∈R {0, 1}, with (gr,mbh

r).
Finally, the adversary guesses b. The scheme is semantically secure if the adver-
sary’s advantage is negligible. The ElGamal scheme achieves semantic security
under the DDH assumption.

In this paper we use a (t, n)-threshold ElGamal cryptosystem based on [17],
in which encryptions are computed using a public key pk = (q, g, h), while de-
cryptions are done using a joint protocol between n parties. The ith party holds
a share αi ∈ Zq of the secret key α = loggh, where the corresponding hi = gαi

can be made public. As long as at least t parties take part, decryption succeeds,
whereas less than t parties are not able to decrypt.

We set the shares as follows: the dealer makes the polynomial
f(x) =

∑t−1
i=0 aix

i mod q, by picking ai ∈R Zq (for 0 < i < t) and a0 =
f(0) = α. In the original scheme, the ith share is αi = f(i), while in our scheme
αi = f(xi), and each xi ∈R Zq is made public. The schemes security is based on
linear secret sharing [18]: t points of a polynomial of degree t − 1 are sufficient
to recover the polynomial and less points give no knowledge about f(0).

The reconstruction of plaintext can be performed in the following way. For
some c = (gr,mhr), it is required to have t proper partial decryptions grαi and
xi, which can be combined to compute (for any x0):

grf(x0) =
∏
i∈S

grαiλ
S
x0,i mod p where λSx0,i =

∏
i′∈S\i

x0 − xi
xi − xi′

∈ Zq (1)

Hence, because grf(0) can be computed, c can be decrypted as follows:mhr/grα =
m. Equation 1 describes a polynomial interpolation in the exponent.

We now show that our TE scheme is equivocable with respect to Definition 4.1
under the DDH assumption. For simplicity, we assume that the combiner receives
only the data from unsuccessful invocations. However, the successful ones can
be handled in a similar way to the security proof of [17]. We prove some lemmas,
and then based on them we show that our scheme is equivocable.

Lemma 4.2 (Run Independence). We define the following game. Firstly,
an adversary A gets from an oracle a public key pk = (q, g, gα), and param-
eters t, n. Secondly, the oracle: chooses b ∈R {0, 1}, prepares a list of shares
{(x1, α1), . . . (xn, αn)} with secret key α, and sends x1, . . . xn to A. Then, A
chooses two plaintexts p0 and p1, and sends them to the oracle. Now, A repeats as
many times as he wishes the following step: A chooses any i1, . . . it−1 ∈ {1, . . . n}
and sends them to an oracle, which returns: gr, pb ∗ grα, grαi1 , . . . grαit−1 ,
where r ∈R Zq is chosen by the oracle. Finally, A outputs his guess of b.

No polynomial adversary A guesses b with non-negligible advantage under the
DDH assumption.

Proof (sketch). Assume that A asks the oracle for partial decryptions at most d
times (where d is polynomial in k). For simplicity, we assume here that n = t = 2
and d = 2. The proof for greater n, t, and d can be made similarly.

Assume to the contrary that there exists an A, that wins the game with a non-
negligible advantage a. Using A we construct an adversary A∗ that breaks the
ElGamal semantic security. Firstly, A∗ receives a public key pk = (q, g, gα) from
a “semantic security” oracle, and forwards it to A. A∗ also generates x1, x2 ∈R Zq
and sends them to A. Then A chooses plaintexts p0, p1, and sends them to A∗.
Subsequently, A∗ forwards them to the oracle, which answers with gr1 , pbg

r1α.
Now, A∗ chooses j ∈R {0, 1} and αj ∈R Zq. A∗ computes, using Equation 1,
such gαj⊕1 that points: {(0, α), (x1, α1), (x2, α2)} define a polynomial of degree
1. Then A∗ chooses b′ ∈R {0, 1}, and a random permutation π : {1, 2} → {1, 2}.

Subsequently, A asks for partial decryptions. When A asks eth time (1st or
2nd time) and π(e) = 1∧ i1 = j then A∗ answers: gr1 , pb ∗gr1α, gr1αj . If π(e) = 1
and i1 6= j then A∗ halts and outputs a random bit. Eventually, if π(e) 6= 1 then
A∗ sends to A (for r ∈R Zq): gr, pb′ ∗ grα, grα2 . Finally, A∗ returns A’s output.

Notice that in the case π(e) = 1, the probability that i1 6= j (and the attack
stops with a random output) is 1

2 . Assume that it does not happen. Note, that if
b′ = b then A’s input is well constructed and the probability that A outputs b is
1
2 +a. Otherwise, because of the random permutation π, A’s input is distributed
independently of b (even if the adversary asks less than d = 2 times). Thus,

the probability of A guessing correctly is 1
2 in this case. Therefore, the A∗’s

advantage is a/4. ut

The proof for greater n and t is easy: A∗ can simply produce more data
αi. In the case of d > 2, the proof is modified as follows. A∗ chooses randomly
t−1 indexes and the corresponding shares. Then A∗ chooses b′ ∈R {0, . . . d−1},
and constructs the answer to the eth question of A (1 ≤ e ≤ d) as follows.
If π(e) = 1 (π is a random permutation of set {1, . . . d}) then, if A∗ knows
αi1 , . . . αit−1 , then A∗ answers with gr, pb ∗ grα, grαi1 , . . . grαit−1 . If π(e) = 1 and
A∗ does not have corresponding shares then A∗ finishes and outputs a random
bit. Otherwise (π(e) > 1), A∗ answers (using Equation 1) with:

gr, px ∗ grα, grαi1 , . . . g
rαit−1

(
x = 0 if π(e)− 1 ≤ b′

x = 1 otherwise

Finally, A’s result is returned by A∗.
This construction ensures that A’s input is either well constructed or, because

of the permutation π, is produced independently of b. The probability of not
returning a random bit (when π(e) = 1) is 1/

(
n
t−1

)
, and is non-negligible in k.

Details of this constructions are quite straightforward, and we omit them here.

Lemma 4.3 (Run Indistinguishability). We define the following game.
Firstly, an adversary A gets from an oracle a public key pk = (q, g, gα), and
parameters t, n. Secondly, the oracle: chooses b ∈R {0, 1}, prepares a list of
shares {(x1, α1), . . . (xn, αn)} with a secret key α, and sends x1, . . . xn to A. Now,
A repeats as many times as he wishes the following step. A chooses a set I =
{i1, . . . it−1} (where each if ∈ {1, . . . n} and |I| = t−1) and sends it to the oracle.
If b = 0 then the oracle chooses r ∈R Zq and answers with: gr, grα, grαi1 , . . . grαit .
Otherwise the oracle chooses r, r1, . . . rt−1 ∈R Zq and answers with:
gr, grα, grr2 , . . . grrt−1 . Finally, A outputs his guess of b.

No polynomial adversary A guesses b with non-negligible advantage under the
DDH assumption.

The proof sketch of this lemma is in the Appendix B.

Corollary 4.4. We define the following game. Firstly, an oracle: chooses
b ∈R {0, 1}, generates a public key pk = (q, g, gα), and a list of random elements
(in Zq): {(x1, α1), . . . (xn, αl)}. Secondly, the oracle sends l, pk, and x1, . . . xl to
an adversary A. The following action is repeated as many times as A wishes: if
b = 0 then the oracle chooses r ∈R Zq and sends to A: gr, grα, grα1 , . . . grαl .
Otherwise the oracle chooses r, r1, . . . rl ∈R Zq and sends: gr, grα, grr1 , . . . grrl .
Finally, A outputs his guess of b.

No polynomial adversary A that guesses b with non-negligible advantage exists
under the DDH assumption.

Proof. Follows directly from Lemma 4.3 for parameters t = l and n = l+ 1. ut

Now based on Lemmas 4.2, 4.3, we show that our TE scheme is equivocable.

Theorem 4.5 (ElGamal Equivocable TE Scheme). The ElGamal TE
scheme described above in Section 4.1 is equivocable with respect to Definition 4.1
under the DDH assumption.

Proof. Successful combining invocations can be handled like in the security
proof from [17]. This theorem, for unsuccessful invocations, follows directly from
Lemma 4.2 for the first game, and from Lemma 4.3 for the second game. ut

5 Problems with Using Robust Fuzzy Extractors and
Secure Sketches for Client-Server PR

In this section we show the main problems of using secure sketches or fuzzy
extractors solving client-server PR in our strongly secure model. Secure sketches
and fuzzy extractors (see [6]) can be used for turning noisy information into
cryptographic keys and securely authenticating biometric data.

Now, let’s define secure sketches and fuzzy extractors. Let F be a field, n ∈ N,
and ∆ a Hamming distance function in Fn. An (Fn,m,m′, τ)-secure sketch is a
pair of procedures, “sketch” (SS) and “recover” (Rec), with the following prop-
erties. Firstly, SS on input w ∈ Fn returns a bit string s ∈ {0, 1}∗. Secondly,
the procedure Rec takes an element w′ ∈ Fn and a bit string s ∈ {0, 1}∗.
The correctness property guarantees that if ∆(w,w′) ≤ τ , then Rec(w′, SS(w))
equals w. The security property guarantees that for any distribution W over Fn
with min-entropy m, the value of W can be recovered by the adversary who
observes s, with probability no greater than 2−m

′
.

An (Fn,m, l, τ, ε)-fuzzy extractor is a pair of procedures, “generate” (Gen)
and “reproduce” (Rep), with the following properties. Firstly, the procedure Gen
on input w ∈ Fn outputs an extracted string R ∈ {0, 1}l and a helper string
P ∈ {0, 1}∗. Secondly, Rep takes an element w′ ∈ Fn and a string P ∈ {0, 1}∗
as inputs. The correctness property guarantees that if ∆(w,w′) ≤ τ and P
were generated by (R,P)=Gen(w) then Rep(w′, P)=R. The security property
guarantees that for any distribution W over Fn with min-entropy m, the string
R is nearly uniform even for those who observe P . A robust version of fuzzy
extractor additionally detects whether the value P got modified by an adversary
(which is essential in the biometric authentication).

Secure sketches can be used to solve local PR (Section 3) and client-server PR
from Section 6. Roughly speaking, the first case is close to the approach from [9].
Let’s consider the second case. The client produces s=SS(p) of his password p
and sends it to the server, who stores s. When the client invokes the PR routine
by sending p′ then the server runs p′′=Rec(p′, s) and if p′ ≈t p′′ then the server
sends back p′′. This solution is sound and secure, i.e, the server can guess p with
probability no greater than 2−m

′
. However, we do not see a way to transform

this solution to the challenge response model, because in this model the server is
not allowed to see the password’s guesses. We leave finding the transformation
of this solution to the challenge response model as a future work.

It would appear that Robust Fuzzy Extractors (RFE) can be used to over-
come this problem in, for example, the following way. First the client produces

(R,P)=Gen(p) and ER(p) (where E is a symmetric encryption scheme, e.g.,
AES), and he sends P and ER(p) to the server, who stores them. When the client
invokes the PR routine, then the server sends the relevant P,ER(p) to the client.
Now, the client can recover R′=Rep(p′, P), and try to decrypt: DecR′(ER(p)).
This solution is sound and seems secure. However, in our security model this
protocol gives too much information to the adversary impersonating the client,
because it allows an offline dictionary attack. We remind, that the adversary is
computationally bounded by k but not n log |D|. Therefore, the adversary can
simply guess l bits (notice that practically always l < m ≤ n log |D|), and break
the protocol. Other solutions based on RFE seem to suffer to the same problem.

6 Password Recovery for the Hash based PA System

In this section we present solutions that work for the most widely used PA
system. We present first a simple and secure PR scheme, that has a functional
drawback: the server’s time complexity is too high for many scenarios. Secondly,
we show the solution that eliminates this drawback.

6.1 Simple PR System for the Hash based PA System

In the simple PR system the server performs all important security actions.
During the registration the client sends to the server the login, and the password
p. The server generates the local PR data, like in Section 3. Later, if the client
wants to recover p, he sends a perturbed password p′ to the server, who runs the
local PR routine (Section 3). If the recovery was successful then p is sent to the
client and the request is rejected otherwise. The correctness and the security of
this protocol follows directly from the corresponding local PR properties.

Notice that the client’s privacy is not protected during protocols run (the
server even knows the result of PR). Furthermore, there are two significant draw-
backs:

(
n
t

)
checks on the server side, and we do not foresee any way to transform

this protocol to work in the securer, challenge-response model. These problems
are solved in Section 6.2.

6.2 Improved PR System for the Hash based PA System

We improve the simple PR scheme by combining the equivocable TE scheme
(Section 4) with local PR. In this solution, the client checks whether the password
recovery is possible. Therefore, the server’s time complexity is efficient. The
improved PR system is presented in Figure 3.

During registration the client first produces a public key (q, g, gα) of the
equivocable TE scheme, with the corresponding secret key α and computes an
encryption c of the password p. Subsequently, he generates the PR data: se-
cret values v1, v2 (they have the same meaning as v in local PR) and points
{(hi(pi), αi − gi(pi))|i ∈ {1, . . . n}}. All the points {(hi(pi), αi)} together with
(0, α) define the polynomial of degree t−1. This construction is very similar to the
local PR registration. The client also produces the login and the hash of the pass-
word for the PA system. Then all these data are stored on the server. Intuitively,

PASSWORD REGISTRATION: The client’s input is: login and p = p1, . . . pn
(pi ∈ D); the server’s input is his database.

1. The client chooses v1, v2 ∈R {0, 1}k and
2. generates a public key of the (t, n)-TE scheme (Section 4): pk = (q, g, h=gα).

Then he generates shares: (x1, α1), . . . (xn, αn) ∈ Zq2 of the secret key α, where
xi = hi(pi). h is MAC (described in Section 2.2) with implicit parameter v1.

3. The client computes encryption of the password p: c = (gr, p ∗ hr), and
4. produces PR=(pk, v1, v2, c, {α1 − g1(p1), . . . αn − gn(pn)}); g is MAC with im-

plicit parameter v2. Then he sends (login,H(p), PR) (H is from the PA system).
5. The server stores (login,H(p), PR) in his database.

LOG IN: The client sends his login, and p to the the server, which accepts the
client if H(p) is equal to the corresponding value from the database.
PASSWORD RECOVERY: The client’s input is: login and p′ = p′1, . . . p

′
n (p′i ∈

D); the server’s input is his database.

1. The client sends (login, p′) to the server.
2. The server performs:

(a) finds PR=(pk, v1, v2, c, {y1, . . . yn}) corresponding to login in the database.

(b) re-randomizes c = (a, b), by c′ = (a′, b′) = (a∗gr
′
, b∗hr

′
). This step ensures

that data from different PR runs are independent of each other.

(c) produces n potential partial decryptions of c′: ∀i∈{1,...n}c′i = a′
yi+gi(p

′
i).

(d) sends v1, pk, c′, and the partial decryptions {c′1, . . . c′n} to the client.
3. Using {(h1(p1), c′1), . . . (hn(pn), c′n)}, the client performs a CM invocation from

Section 4. If a decryption p′′ matches p′ then the client outputs p′′.

Fig. 3. An improved PR for the Hash based PA system

the server cannot recover more than in local PR, because he stores the local PR
data and an encryption of the password under the secret of the local PR data.

If the client forgets the password then he invokes the PR routine by sending
the login and a guess p′. Subsequently, the server produces, using the homo-
morphic property, a new encryption c′ of p. Afterwards, the potential partial
decryptions {c′i = c′

yi+hg(p′i)|i ∈ {1, . . . n}} are produced. Notice, that if p′i = pi
then (hi(pi), c′i) is a proper partial decryption of c′. Later on, the server sends
v1 (so the client can compute h), c′, and c′1, . . . c

′
n. If p′ ≈t p, then the client

can easily obtain p, because he has at least t proper decryptions. Otherwise, the
client does not have enough correct decryptions to obtain p. Moreover, because
of the equivocable property of the TE scheme, the client cannot recognize which
partial decryptions are correct from the data from many unsuccessful PR runs.

v1 and v2 are implicit parameters for h and g, respectively, that are used to
make different local PR data indistinguishable. v1 is public (it is send to the
client before any authentication), while v2 is not revealed to the client, so he
cannot locally compute g.

Correctness and Security. Correctness of the PR phase is straightforward:
if p ≈t p′ then at least t partial decryptions are correct and thus, the client can
decrypt c′. Otherwise, the client does not have enough partial decryptions of c′.

Theorem 6.1 (The privacy of the client). An adversary A attacking the
privacy of the client from Figure 3 produces two passwords p0, p1, and sends them
to an oracle. Then the oracle, chooses b ∈R {0, 1}, performs the registration for
pb, and sends the result back. Finally, A outputs his guess of b.

Working in ROM, no A having non-negligible advantage exits under the DDH
assumption and Assumption 3.1.

Proof (sketch). Assuming that the DDH assumptions holds (and thus, the ElGa-
mal is semantically secure), A can break the scheme only by gaining the secret
of the local PR data. Following Theorem 3.2, if the local PR security is broken
then Assumption 3.1 does not hold.

Theorem 6.2 (The privacy of the server). Define an ideal situation to be
one, in which an adversary tries PR by sending his guess p′ of the password p
to the server, who returns p if p′ ≈t p, and the empty string otherwise. Now,
define a simulator as an algorithm that works in the ideal situation, and acts as
a server to an adversary A attacking the privacy of the server.

In ROM and under the DDH assumption, there exists a simulator I such that
no adversary A can distinguish between I and the real server (from Figure 3)
with non-negligible advantage.

The proof sketch of this lemma is in the Appendix C.

Complexity. During the registration the client sends a public key, two secret
values (of length k), the login, the hash of the password, an encryption of the
password, and n perturbed shares. The complexity of this phase can be bound
by O(nk) bits. In the PR phase the server sends the public key, an encryption
of password, and n potential partial decryptions. This totals to O(nk) bits.

The registration is performed efficiently by the participants. In the PR phase
the server’s performance is fast (main load is n exponentiations), while the
client’s time complexity involves

(
n
t

)
polynomial interpolations (Step 3).

7 Password Recovery for the Challenge-Response System

In this section we present a PR solution for challenge response login system,
where the password or the guess of the password is never sent to the server. We
combine the protocol from Section 6.2 with OTnl oblivious transfer (see below).
The challenge-response PR protocol is shown in Figure 4.

There are two participants in the OT protocol: Receiver, who wants to obtain
some information from a remote database and Sender that owns the database.
OT can be formalized as follows. During a 2-party 1-out-of-n OT protocol
for l-bit strings (OTnl), Receiver fetches S[q] from the Sender’s database S =
(S[1], . . . S[n]), S[j] ∈ {0, 1}l, so that a computationally bounded Sender does
not know which entry Receiver is learning. Moreover, we assume information-
theoretically privacy of Sender (it means that Receiver obtains only desired S[q]
and nothing more). Such OTnl scheme is presented in [13]. This OT protocol
works in bit communication O(k log2 n+ l log n), low degree polylogarithmic Re-
ceiver’s time computation and linear time Sender’s computation. This is the
fastest oblivious transfer protocol to the best of our knowledge.

PASSWORD REG.: like in Fig. 3, but instead of H(p), values g, gH(p) are sent.
LOGGING IN: like in the challenge-response PA system (Figure 1).
PASSWORD RECOVERY: The client’s input is: login and p = p′1, . . . p

′
n; p′i ∈

D; the server’s input is the database.

1. The client sends login to the server.
2. The server, using login, finds PR=(pk, v1, v2, c, {y1, . . . yn}) in the database.

Then he re-randomizes c = (a, b): c′ = (a′, b′) = (a ∗ gr
′
, b ∗ hr

′
) and sends v1,

pk, c′.
3. For i ∈ {1, . . . n}, the client and the server performs OT bm protocol, where
|D|=m and b is a partial decryption’s bit size. The server acts as Sender with
the database:

S[j] = a′
yi+gi(j), for all j ∈ D

and the client acts as Receiver with index q = pi. The client’s output is S[q].
4. The same like Step 3 in PR from Figure 3.

Fig. 4. A PR protocol for the challenge-response PA system

This system is very similar to the one from Section 6.2. However, the log in
routine is different (i.e., the challenge-response one is used), and the PR routine
is a bit modified. The client does not send the guess p′=p′1, . . . p

′
n directly to the

server. Instead, he obtains partial decryptions corresponding to p′ in an oblivious
way, as follows. For each i ∈ {1, . . . n}, the server prepares a potential partial
decryption c′i for all possible |D| letters (Step 3). Then the client asks for partial
decryptions for guess p′=p′1, . . . p

′
n by performing oblivious transfer n times: for

every letter p′i separately. In this way, the server does not gain information
about p′, and the client cannot ask for more than one partial decryption per
OT protocol. The protocol’s security follows from the security of OT and the
security properties of the scheme from Section 6.2.

7.1 Correctness and Security

We give an informal intuition about the theorems and the proofs. The proof of
the correctness and the privacy of the client outside the protocol runs are the
same as for the system from Figure 3. The proof of the privacy of the server
is the same as the one for PR from Figure 3, assuming that the OT is secure.
The privacy of the client during PR runs is maintained by using OT (the server
cannot gain any information about the client guess p′1, . . . p

′
n).

7.2 Complexity

Only the PR phase is significantly different from the system from Figure 3. The
major payload comes from n runs of OTO(k)

|D| protocols. This can be bound by
O(n(k log2 |D|+ k log |D|)) = O(nk log2 |D|) bits. The bit complexity of this PR,
although greater than the one from Figure 3, is still efficient.

In the PR protocol the time complexity of the client is relatively high and
follows from

(
n
t

)
polynomial interpolations. The main drawback of this protocol

is the time complexity of the server, who acts as Sender in OT, using O(n ∗ |D|)
operations. However, for the relatively small domain of letters D, and due to

the fact that PR is performed rarely, this solution is still quite feasible. This
drawback might be of greater impact if we use this protocol in the personal
entropy setting (i.e., the question-answer setting), where |D| might be larger.

8 Conclusions

In this paper we have presented secure and efficient solutions for password re-
covery, where the recovery data is stored securely at the server side. Our solu-
tions apply to all common types of password authentication systems, without
significantly lowering their security. We have introduced a variant of threshold
encryption, called equivocable, that serves as a building block to our solutions,
and that may be of independent interest as well.

Further research could be aimed at alternative definitions of password similar-
ity, that also include reordering of password letters (which is a common mistake).
Other issues that can be improved are the

(
n
t

)
time complexity at the client side,

and the server’s time complexity in the challenge-response protocol (Section 7).

References

[1] Mihir Bellare and Phillip Rogaway. Random oracles are practical: a paradigm for
designing efficient protocols. In CCS ’93: Proceedings of the 1st ACM conference
on Computer and communications security, pages 62–73, New York, NY, USA,
1993. ACM.

[2] G.R. Blakley. Safeguarding cryptographic keys. In AFIPS Conference Proceedings,
volume 48, pages 313–317, June 1979.

[3] Daniel Bleichenbacher and Phong Q. Nguyen. Noisy polynomial interpolation and
noisy chinese remaindering. In EUROCRYPT, pages 53–69, 2000.

[4] Dan Boneh. Finding smooth integers in short intervals using crt decoding. J.
Comput. Syst. Sci., 64(4):768–784, 2002.

[5] Ivan Damgard, M. Jurik, and J. Nielsen. A generalization of paillier’s public-key
system with applications to electronic voting, 2003.

[6] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extrac-
tors: How to generate strong keys from biometrics and other noisy data. CoRR,
abs/cs/0602007, 2006.

[7] Carl Ellison, Chris Hall, Randy Milbert, and Bruce Schneier. Protecting secret
keys with personal entropy. Future Generation Computer Systems, 16(4):311–318,
2000.

[8] Pierre-Alain Fouque, Guillaume Poupard, and Jacques Stern. Sharing decryption
in the context of voting or lotteries. In FC ’00: Proceedings of the 4th International
Conference on Financial Cryptography, pages 90–104, 2001.

[9] Niklas Frykholm and Ari Juels. Error-tolerant password recovery. In CCS ’01:
Proceedings of the 8th ACM conference on Computer and Communications Secu-
rity, pages 1–9, New York, NY, USA, 2001. ACM.

[10] Taher El Gamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In Proceedings of CRYPTO 84 on Advances in cryptology,
pages 10–18, New York, NY, USA, 1985. Springer-Verlag New York, Inc.

[11] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press, New York, NY, USA, 2004.

[12] Bhavana Kanukurthi and Leonid Reyzin. An improved robust fuzzy extractor. In
SCN, pages 156–171, 2008.

[13] Helger Lipmaa. An oblivious transfer protocol with log-squared communication.
In Jianying Zhou, Javier Lopez, Robert H. Deng, and Feng Bao, editors, ISC,
volume 3650 of Lecture Notes in Computer Science, pages 314–328. Springer,
2005.

[14] Moni Naor and Benny Pinkas. Oblivious polynomial evaluation. SIAM J. Com-
put., 35(5):1254–1281, 2006.

[15] Naom Nisan and Amnon Ta-Shma. Extracting randomness: a survey and new
constructions. J. Comput. Syst. Sci., 58(1):148–173, 1999.

[16] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Advances in Cryptology – EUROCRYPT, pages 223–238, May 1999.

[17] Berry Schoenmakers and Pim Tuyls. Practical two-party computation based on
the conditional gate. In Pil Joong Lee, editor, ASIACRYPT, volume 3329 of
Lecture Notes in Computer Science, pages 119–136. Springer, 2004.

[18] Adi Shamir. How to share a secret. In Communications of the ACM, vol. 22,
n.11, pages 612–613, November 1979.

A Simple Substring-Knowledge Password Recovery in
the Challenge-Response Setting

In this appendix we present a simple and efficient substring-knowledge challenge-
response PR scheme that uses an additively homomorphic encryption scheme.
In order for a client to recover a password it needs to prove to the server that
he remembers a substring of the original password.

Let [·]K denote a homomorphic encryption function with a public key K. The
homomorphic cryptosystem supports the following two operations, which can be
performed without knowledge of the private key. Firstly, given the encryptions
[a]K and [b]K of a and b, one can efficiently compute the encryption of a + b,
denoted [a+b]K := [a]K+h [b]K . Secondly, given a constant c and the encryption
[a]K of a, one can efficiently compute the encryption of c · a, denoted [a · c]K :=
[a]K ·h c. These properties hold for suitable operations +h and ·h defined over
the range of encryption function. An example of such an encryption scheme is
Paillier’s cryptosystem [16].

In the registration phase the client sends, besides data necessary for log-
ging in, h1(p1,t), h2(p2,t+1), hn−t+1(pn−t+1,n) (for simplicity, we denote pi,w =
pi, . . . pw) and EH1(p1,t)(p), . . . EHn−t+1(pn−t+1,n)(p), where Esk(.) is a symmetric
encryption scheme and Hi, hi are hash functions. Notice, that to recover the
password p, it is necessary to derive some hi(pi, . . . pi+t−1) or Hi(pi, . . . pi+t−1),
and it (assuming ROM) is only possible by obtaining any substring pi, . . . pi+t−1.

Later on, in the PR phase, the client produces a public keyK of the homomor-
phic encryption scheme, and sends it to the server together with
[h1(p′1,t)]K , . . . [hn−t+1(pn−t+1,n)]K . Then the server computes: {[(hi(p′i,i+t−1)−
hi(pi,i+t−1)) ∗ ri + EHi(pi,i+t−1)(p)]K |i ∈ {1, . . . n − t + 1}}, (where ri are ran-
dom values), and sends this set to the client. The client decrypts the val-
ues from the received set and checks if he can decrypt these values with any
H1(pi,t), H2(p2,t+1), Hn−t+1(pn−t+1,n) (then he derives p).

The scheme is correct, since if hi(p′i,i+t−1) = hi(pi,i+t−1) then the client ob-
tains EHi(pi,i+t−1)(p), and he can easily decrypt it. Otherwise, the value received
is random (because ri are random) and therefore, the client cannot successfully
decrypt. The privacy is protected by the security of the encryption schemes.

B Proof Sketch of Lemma 4.3

Notice that this game can be rephrased as follows. The oracle’s first answer
is always proper, i.e.: gr, grα, grαi1 , . . . grαit−1 . Only the following answers are
constructed either always properly (if b = 0), or always randomly. It follows
from the fact that t random values (in the first oracle’s answer) always define a
polynomial of degree at most t− 1.

Proof (sketch). Assume that A asks the oracle for partial decryptions at most
d times (where d is polynomial in k). For simplicity, we assume that n = t = 3
and d = 2. The proof for greater n, t, and d can be made similarly.

Assume to the contrary that A winning the game with non-negligible advan-
tage a, exists. Using A we construct an adversary A∗ that breaks the ElGamal
security. Firstly, A∗ receives a public key (q, g, gα) from a “semantic security”
oracle. Secondly, A∗ generates x1, x2, x3 ∈R Zq and sends them to A. Then A∗

sends plaintexts p0=1 and p1 ∈R G to the oracle, which answers with gr1 , pbgr1α.
Now, A∗ chooses a random permutation π : {1, 2, 3} → {1, 2, 3} (we denote

jf = π(f)), and picks αj1 , αj2 ∈R Zq. Then A∗ computes (using Equation 1),
such gαj3 that points: {(0, αj1), (xj1 , α), (xj2 , αj2), (xj3 , αj3)} define a polynomial
of degree 2. We denote (for 1 ≤ i ≤ 3): α′i = α if i = j, and α′i = αi otherwise.
A∗ sends a public key pk′ = (q, g, gαj1) to A.

When A asks the first time (for partial decryptions) with i1, i2 then A∗

answers (for r ∈R Zq) with: gr, grαj , grα
′
i1 , grα

′
i2 . For the second A’s question

i′1, i
′
2, A∗ firstly checks whether {i′1, i′2} 6= {j1, j2}. If it holds then A∗ halts

and outputs a random bit. Otherwise A∗ first sends gr1 , gr1αj . Then A∗ chooses
b′ ∈R {0, 1}, and for every 1 ≤ e ≤ 2, acts as follows. If i′e = j1 then A∗ sends
pbg

r1α to A. If i′e = j2 and b′ = 0 then A∗ sends gr1αj2 . Otherwise (i′e = j2 and
b′ = 1): gr1x (for x ∈R Zq) is sent. Finally, A∗ returns the A’s output.

Notice that the probability that {i′1, i′2} 6= {j1, j2} (and that A∗ halts with a
random output) is 1− 1/

(
3
2

)
. Assume that it does not happen. If b = b′ then A’s

input is well constructed and the probability that A outputs b is 1
2 +a. Otherwise,

because of the random permutation π, A’s input is distributed independently of
b. Hence, the probability of A guessing correctly is 1

2 in this case. Therefore, A∗’s
advantage is a/(2

(
3
2

)
), and is non-negligible. ut

The full proof for this lemma is similar, but complex, and we omit it here
due to the space constraints (the proof for d > 2 uses similar techniques as in
the proof of Lemma 4.2).

C Proof Sketch of Lemma 6.2

Proof (sketch). We construct I that works only for unsuccessful PR invocations.
The proof for a successful A’s invocation can be made similarly.

Firstly, I generates v1 ∈R {0, 1}k, a public key pk = (q, g, gα), y ∈R Dn, and
shares (x1, α1), . . . (xn, αn) ∈ Zq2 of the equivocable TE scheme (Section 4), such
that xi = hi(pi). Later, when A sends his ith guess pi, then I forwards it to the
“ideal” oracle. If the oracle’s answer equals p then I halts. Otherwise I chooses
r, r1, . . . rn ∈R Zq, and sends: v1, pk, c=(gr, ygrα), {c1=grr1 , . . . cn=grrn} to A.

A can only submit the proper guess of the password (otherwise the server
would recognize it). Therefore, A cannot break the protocol by disobeying the
PR routine. Hence, now we only need to show that the A’s view send by I is
indistinguishable from the corresponding view in the real situation.

Let’s now consider A in the real situation (Figure 3). Notice that, because
A works in ROM, the data received by A in any d unsuccessful PR runs cor-
responds to the data from d unsuccessful invocations of the algorithm CM in
the equivocable TE scheme. The difference is that, here, A does not know which
value hi(pi) (for any pi ∈ D) is a part of a share (i.e., equals xi), while CM cor-
rectly knows all xi. However, Lemmas 4.2, 4.3, and Corollary 4.4 can be applied
in A’s case, because A has actually less information than the combiner CM .

In every invocation A receives at most t− 1 correct partial decryptions. In-
correct partial decryptions are created using values independent of α and αi,
because if pj 6= p′j then αj − gj(pj) + gj(p′j) is random in Zq (in ROM). There-
fore, based on Lemma 4.2, A cannot recognize encryptions received in the real
situation from encryptions received from I.

Let p be any password from Dn encoded in G, and p1, . . . pd is any list of
passwords not similar to p. Consider the following probability distributions of
instances of the adversary’s view:
– S0,0: A receives properly constructed data from the the PR routine (Figure 3)

for his guesses p1, . . . pd, and for the password p.
– S0,1: For every guess pi, A receives proper v1, pk, an encryption of p: c, and
n values: if pij = pj (1 ≤ j ≤ n) then a correct partial decryption c′i, and
c′j ∈R G otherwise.

– S1,1: similar to S0,1, but all c′j ∈R G (for every guess); S1,1 corresponds to
the view sent by I.
We show that no algorithm D(p, p1, . . . pd) can distinguish between an input

sampled from S0,0 and an input sampled from S1,1 (under the DDH assumption).
Define D0,0 as the probability that the output of D is 1 given an input sampled
from S0,0. Similarly, we define D1,1, D0,1. It holds that

|D0,0 −D1,1| ≤ |D0,0 −D0,1|+ |D0,1 −D1,1|.
Assume to the contrary that |D0,0−D1,1| is non-negligible. Then, either |D0,0−
D0,1| is non-negligible or |D0,1 −D1,1| is non-negligible. In the first case, Corol-
lary 4.4 does not hold. In the second case, Lemma 4.3 does not hold. Therefore,
A cannot distinguish I from the real server under the DDH assumption. ut

