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The expectation monad is introduced abstractly via two composable adjunctions, but concretely cap-
tures measures. It turns out to sit in between known monads: on the one hand the distribution and
ultrafilter monad, and on the other hand the continuation monad. This expectation monad is used in
two probabilistic analogues of fundamental results of Manes and Gelfand for the ultrafilter monad:
algebras of the expectation monad are convex compact Hausdorff spaces, and are dually equivalent to
so-called Banach effect algebras. These structures capture states and effects in quantum foundations,
and the duality between them. Moreover, the approach leads to a new re-formulation of Gleason’s
theorem, expressing that effects on a Hilbert space are free effect modules on projections, obtained
via tensoring with the unit interval.

1 Introduction

Techniques that have been developed over the last decades for the semantics of programming languages
and programming logics gain wider significance. In this way a new interdisciplinary area has emerged
where researchers from mathematics, (theoretical) physics and (theoretical) computer science collabo-
rate, notably on quantum computation and quantum foundations. The article [6] uses the phrase “Rosetta
Stone” for the language and concepts of category theory that form an integral part of this common area.

The present article is also part of this new field. It uses results from programming semantics, topology
and (convex) analysis, category theory (esp. monads), logic and probability, and quantum foundations.
The origin of this article is an illustration of the connections involved. Previously, the authors have
worked on effect algebras and effect modules [21, 19, 20] from quantum logic, which are fairly general
structures incorporating both logic (Boolean and orthomodular lattices) and probability (the unit interval
[0,1] and fuzzy predicates). By reading completely different work, on formal methods in computer
security (in particular the thesis [35]), the expectation monad was noticed. The monad is used in [35, 9]
to give semantics to a probabilistic programming language that helps to formalize (complexity) reduction
arguments from security proofs in a theorem prover. In [35] (see also [5, 33]) the expectation monad is
defined in a somewhat ad hoc manner (see Section 10 for details). Soon it was realized that a more
systematic definition of this expectation monad could be given via the (dual) adjunction between convex
sets and effect modules (elaborated in Subsection 2.4). Subsequently the two main parts of the present
paper emerged.

1. The expectation monad turns out to be related to several known monads as described in the fol-
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lowing diagram. (
distribution D

)
,, ,,YYYYY (

expectation E
)

// //
(
continuation C

)(
ultrafilter UF

) 22 22eeeee
(1)

The continuation monad C also comes from programming semantics. But here we are more inter-
ested in the connection with the distribution and ultrafilter monads D and UF . Since the algebras
of the distribution monad are convex sets and the algebras of the ultrafilter monad are compact
Hausdorff spaces (a result known as Manes theorem) it follows that the algebras of the expectation
monad must be some subcategory of convex compact Hausdorff spaces. One of the main results
in this paper, Theorem 4, makes this connection precise. It can be seen as a probabilistic version
of Manes theorem. It uses basic notions from Choquet theory, notably barycenters of measures.

2. The adjunction that gives rise to the expectation monad E yields a (dual) adjunction between
the category Alg(E ) of algebras and the category of effect modules. By suitable restriction this
adjunction gives rise to an equivalence between “observable” E -algebras and “Banach” (complete)
effect modules, see Theorem 5.

These two parts of the paper may be summarized as follows. There are classical results:

Alg(UF )
[Manes]
'

(
compact Hausdorff spaces

) [Gelfand]
'

(
comm. C∗-algebras

)op

Here we give the following “probabilistic” analogues:

Algobs(E ) '
(
convex compact Hausdorff spaces

)
obs '

(
Banach effect modules

)op

The subscript ‘obs’ refers to a suitable observability condition, see Section 7. The role played by the two-
element set {0,1} in these classical results—e.g. as “schizophrenic” object—is played in our probabilistic
analogues by the unit interval [0,1].

Quantum mechanics is notoriously non-intuitive. Hence a proper mathematical understanding of the
relevant phenomena is important, certainly within the emerging field of quantum computation. It seems
fair to say that such an all-encompassing understanding of quantum mechanics does not exist yet. For
instance, the categorical analysis in [1, 2] describes some of the basic underlying structure in terms of
monoidal categories, daggers, and compact closure. However, an integrated view of logic and probability
is still missing. Here we certainly do not provide this integrated view, but possibly we do contribute a
bit. The states of a Hilbert space H , described as density matrices DM(H ), fit within the category
of convex compact Hausdorff spaces investigated here. Also, the effects Ef(H ) of the space fit in the
associated dual category of Banach Hausdorff spaces. The duality we obtain between convex compact
Hausdorff spaces and Banach effect algebras precisely captures the translations back and forth between
states and effects, as expressed by the isomorphisms:

Hom
(
Ef(H ), [0,1]) ∼= DM(H) Hom

(
DM(H ), [0,1]) ∼= Ef(H).

These isomorphisms (implicitly) form the basis for the quantum weakest precondition calculus described
in [13].

In this context we shed a bit more light on the relation between quantum logic—as expressed by the
projections Pr(H ) on a Hilbert space—and quantum probability—via its effects Ef(H ). In Section 9
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it will be shown that Gleason’s famous theorem, expressing that states are probability measures, can
equivalently be expressed as an isomorphism relating projections and effects:

[0,1]⊗Pr(H ) ∼= Ef(H ).

This means that the effects form the free effect module on projections, via the free functor [0,1]⊗ (−).
More loosely formulated: quantum probabilities are freely obtained from quantum predicates.

We briefly describe the organization of the paper. It starts with a quick recap on monads in Section 2,
including descriptions of the monads relevant in the rest of the paper. Section 3 gives a brief introduction
to effect algebras and effect modules. It also establishes equivalences between (Banach) order unit
spaces and (Banach) Archimedean effect modules. In Section 4 we give several descriptions of the
expectation monad in terms of effect algebras and effect modules. We also describe the map between
the expectation monad and the continuation monad here. Sections 5 and 6 deal with the construction of
the other two monad maps from Diagram (1): those from the ultrafilter and distribution monads to the
expectation monad. Here we also explore some of the implications of these maps. Next, in Section 7,
we study the algebras of the expectation monad. We prove that the category of E -algebras is equivalent
to the category compact convex sets with continuous affine mappings. In Section 8 we establish a dual
adjunction between E -algebras and effect modules. We prove that when restricted to so-called observable
E -algebras and Banach effect modules this adjunction becomes an equivalence. In Section 9 we apply
this duality to quantum logic. We prove that the isomorphism [0,1]⊗Pr(H ) ∼= Ef(H ) is an algebraic
reformulation of Gleason’s theorem. Finally in Section 10 we examine how the expectation monad has
appeared in earlier work on programming semantics. We also suggest how it might be used to capture
both non-deterministic and probabilistic computation simultaneously, although the details of this are left
for future work.

2 A recap on monads

This section recalls the basics of the theory of monads, as needed here. For more information, see
e.g. [29, 8, 28, 10]. Some specific examples will be elaborated later on.

A monad is a functor T : C→ C together with two natural transformations: a unit η : idC⇒ T and
multiplication µ : T 2⇒ T . These are required to make the following diagrams commute, for X ∈ C.

T (X)
ηT (X) //

PPPPPPPPPP

PPPPPPPPPP T 2(X)

µX
��

T (X)
T (ηX )oo

nnnnnnnnnn

nnnnnnnnnn T 3(X)
µT (X) //

T (µX )
��

T 2(X)

µX
��

T (X) T 2
µX

// T (X)

Each adjunction F a G gives rise to a monad GF .
Given a monad T one can form a category Alg(T ) of so-called (Eilenberg-Moore) algebras. Objects

of this category are maps of the form a : T (X)→ X , making the first two squares below commute.

X

FFFFFFFF

FFFFFFFF
η // T X

a
��

T 2X
µ

��

T (a) // T X
a

��

T X
a

��

T ( f ) // TY
b

��
X T X a

// X X
f

// Y
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A homomorphism of algebras (X ,a)→ (Y,b) is a map f : X → Y in C between the underlying objects
making the diagram above on the right commute. The diagram in the middle thus says that the map a
is a homomorphism µ → a. The forgetful functor U : Alg(T )→ C has a left adjoint, mapping an object
X ∈ X to the (free) algebra µX : T 2(X)→ T (X) with carrier T (X).

Each category Alg(T ) inherits limits from the category C. In the special case where C = Sets, the
category of sets and functions (our standard universe), the category Alg(T ) is not only complete but also
cocomplete (see [8, § 9.3, Prop. 4]).

A map of monads σ : T ⇒ S is a natural transformation that commutes with the units and multipli-
cations, as in:

X
ηX

��

X
ηX

��

T 2(X)

µX
��

σT X // S(T (X))
S(σX ) // S2(X)

µX
��

T (X)
σX

// S(X) T (X)
σX

// S(X)

(2)

Such a map of monads σ : T ⇒ S induces a functor (−) ◦ σ : Alg(S)→ Alg(T ) between categories of
algebras that commutes with the forgetful functors.

Lemma 1. Assume a map of monads σ : T ⇒ S.

1. There is a functor (−) ◦ σ : Alg(S)→ Alg(T ) that commutes with the forgetful functors.

2. If the category Alg(S) has sufficiently many coequalizers—like when the underlying category is
Sets—this functor has a left adjoint Alg(T )→ Alg(S); it maps an algebra a : T (X)→ X to the
following coequalizer aσ in Alg(S).(

S2(T X)

S(T X)
µ��

)
µ◦S(σ) //

S(a)
//

(
S2(X)

S(X)
µ��

)
c // //

(
S(Xσ )

Xσ

aσ��

)
�

Proof We need to establish a bijective correspondence between algebra maps:(
S(Xσ )

Xσ

aσ��

)
f //

(
S(Y )

Y
b��

)
=======================(

T (X)

X
a��

)
g

//

(
T (Y )

Y
b◦σ��

)

This works as follows. Given f , one takes f = f ◦ c ◦ η : X → Y . And given g one obtains g : Xσ → Y
because b ◦ T (g) : S(X)→ Y coequalizes the above parallel pair µ ◦ S(σ) and S(a). Remaining details
are left to the interested reader. �

2.1 The Distribution monad

We shall write D for the discrete probability distribution monad on Sets. It maps a set X to the set of
formal convex combinations r1x1 + · · ·+ rnxn, where xi ∈ X and ri ∈ [0,1] with ∑i r1 = 1. Alternatively,

D(X) = {ϕ : X → [0,1] | supp(ϕ) is finite, and ∑x ϕ(x) = 1},
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where supp(ϕ) ⊆ X is the support of ϕ , containing all x with ϕ(x) 6= 0. The functor D : Sets→ Sets
forms a monad with the Dirac function as unit in:

X
η // DX DDX

µ // DX

x � // 1x = λy.

{
1 if y = x

0 if y 6= x
Ψ

� // λy. ∑ϕ∈DX Ψ(ϕ) ·ϕ(y).

[Here we use the “lambda” notation from the lambda calculus [7]: the expression λx. · · · is used for the
function x 7→ · · · . We also use the associated application rule (λx. f (x))(y) = f (y).]

Objects of the category Alg(D) of (Eilenberg-Moore) algebras of this monad D can be identified
as convex sets, in which sums ∑i rixi of convex combinations exists. Morphisms are so-called affine
functions, preserving such convex sums, see [19]. Hence we also write Alg(D) = Conv, where Conv is
the category of convex sets and affine functions.

The prime example of a convex set is the unit interval [0,1]⊆R of probabilities. Also, for an arbitrary
set X , the set of functions [0,1]X , or fuzzy predicates on X , is a convex set, via pointwise convex sums.

2.2 The ultrafilter monad

A particular monad that plays an important role in this paper is the ultrafilter monad UF : Sets→ Sets,
given by:

UF (X) = {F ⊆P(X) |F is an ultrafilter}
∼= { f : P(X)→{0,1} | f is a homomorphism of Boolean algebras}

(3)

Such an ultrafilter F ⊆P(X) satisfies, by definition, the following three properties.

• It is an upset: V ⊇U ∈F ⇒V ∈F ;

• It is closed under finite intersections: X ∈F and U,V ∈F ⇒U ∩V ∈F ;

• For each set U either U ∈F or ¬U = {x ∈ X | x 6∈ U} ∈F , but not both. As a consequence,
/0 6∈F .

For a function f : X → Y one obtains UF ( f ) : UF (X)→UF (Y ) by:

UF ( f )(F ) = {V ⊆ Y | f−1(V ) ∈F}.

Taking ultrafilters is a monad, with unit η : X →UF (X) given by so-called principle ultrafilters:

η(x) = {U ⊆ X | x ∈U}.

The multiplication µ : UF 2(X)→UF (X) is:

µ(A ) = {U ⊆ X | D(U) ∈A } where D(U) = {F ∈UF (X) |U ∈F}.

The set UF (X) of ultrafilters on a set X is a topological space with basic (compact) clopens given
by subsets D(U) = {F ∈UF (X) |U ∈F}, for U ⊆ X . This makes UF (X) into a compact Hausdorff
space. The unit η : X →UF (X) is a dense embedding.

The following result shows the importance of the ultrafilter monad, see e.g. [27], [22, III.2], or [10,
Vol. 2, Prop. 4.6.6].
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Theorem 1 (Manes). Alg(UF )'CH, i.e. the category of algebras of the ultrafilter monad is equivalent
to the category CH of compact Hausdorff spaces and continuous maps.

The proof is complicated and will not be reproduced here. We only extract the basic constructions.
For a compact Hausdorff space Y one uses denseness of the unit η to define a unique continuous exten-
sions f # as in:

X // η //

f
))RRRRRRRRRRRRRRR UF (X)

f #

���
�

Y

(4)

One defines f #(F ) to be the unique element in
⋂
{V | V ⊆ Y with f−1(V ) ∈F}. This intersection is

a singleton precisely because Y is a compact Hausdorff space. In such a way one obtains an algebra
UF (Y )→ Y as extension of the identity.

Conversely, assuming an algebra chX : UF (X)→ X one defines U ⊆ X to be closed if for all F ∈
UF (X), U ∈ F implies ch(F ) ∈ U . This yields a topology on X which is Hausdorff and compact.
There can be at most one such algebra structure chX : UF (X)→ X on a set X , corresponding to a
compact Hausdorff topology, because of the following standard result.

Lemma 2. Assume a set X carries two topologies O1(X),O2(X)⊆P(X) with O1(X)⊆ O2(X), O1(X)
is Hausdorff and O2(X) is compact, then O1(X) = O2(X). �

Proof If U is closed in O2(X), then it is compact, and, because O1(X)⊆O2(X), also compact in O1(X).
Hence it is closed there. �

We can apply this result to the space UF (X) of ultrafilters: as described before Theorem 1, UF (X)
carries a compact Hausdorff topology with sets D(U) = {F ∈ UF (X) |U ∈F} as clopens. Also, it
carries a compact Hausdorff topology via the (free) algebra µX : UF 2(X)→ UF (X). It is not hard to
see that the subsets D(U) are closed in the latter topology, so the two topologies on UF (X) coincide by
Lemma 2. Later we shall use a similar argument.

Example 1. The unit interval [0,1] ⊆ R is a standard example of a compact Hausdorff space. Its
Eilenberg-Moore algebra ch: UF ([0,1])→ [0,1] can be described concretely on F ∈ UF ([0,1]) as:

ch(F ) = inf{s ∈ [0,1] | [0,s] ∈F}. (5)

For the proof, recall that ch(F ) is the (sole) element of the intersection
⋂
{V | V ∈ F}. Hence if

[0,s] ∈F , then ch(F ) ∈ [0,s] = [0,s], so ch(F )≤ s. This establishes the (≤)-part of (5). Assume next
that ch(F )< inf{s | [0,s]∈F}. Then there is some r ∈ [0,1] with ch(F )< r < inf{s | [0,s]∈F}. Then
[0,r] is not in F , so that ¬[0,r] = (r,1] ∈F . But this means ch(F ) ∈ (r,1) = [r,1], which is impossible.

Notice that (5) can be strengthened to: ch(F ) = inf{s ∈ [0,1]∩Q | [0,s] ∈F}.

The second important result about compact Hausdorff spaces is as follows.

Theorem 2 (Gelfand). CH'C∗-Algop, i.e. the category CH of compact Hausdorff spaces is equivalent
to the opposite of the category of commutative C∗-algebras.

This paper presents probabilistic analogues of these two basic results (Theorems 1 and 2), involving
convex compact Hausdorff spaces (see Theorem 5).
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2.3 The continuation monad

The so-called continuation monad is useful in the context of programming semantics, where it is em-
ployed for a particular style of evaluation. The monad starts from a fixed set C and takes the “double
dual” of a set, where C is used as dualizing object. Hence we first form a functor C : Sets→ Sets by:

C (X) = C(CX ) and C
(
X

f→ Y
)

= λh ∈C(CX ).λg ∈CY .h(g ◦ f ).

This functor C forms a monad via:

X
η // C(CX )

C

(
C

(
C(CX )

))
µ // C(CX )

x � // λg ∈CX .g(x) H � // λg ∈CX .H
(
λk ∈C(CX ).k(g)

)
.

The following folklore result will be useful in the present context.

Lemma 3. Let T : Sets→ Sets be an arbitrary monad and C (X) =C(CX ) be the continuation monad on
a set C. Then there is a bijective correspondence between:

T (C)
a // C Eilenberg-Moore algebras

===========
T

σ
+3 C maps of monads.

Proof First, given an algebra a : T (C)→C define σX : T (X)→C(CX ) by:

σX(u)(g) = a
(
T (g)(u)

)
.

Conversely, given a map of monads σ : T ⇒C(C(−)), define as algebra a : T (C)→C,

a(u) = σC(u)(idC). �

Taking C = 2 = {0,1} to be the two-element set, yields as associated continuation monad C (X) =
2(2

X ) ∼= P(P(X)), the double-powerset monad. For a function f : X → Y we have a map P2(X)→
P2(Y ), by functoriality, given by double inverse image: U ⊆P(X) 7−→ ( f−1)−1(U)= {V ⊆Y | f−1(V )∈
U}.

It is not hard to see that the inclusion maps:

UF (X)
(3)
∼=

// BA(2X ,2) � � // 2(2
X )

form a map of monads, from the ultrafilter monad to the continuation monad (with constant C = 2).

2.4 Monads from composable adjunctions

It is well-known, see e.g. [29, Ch. VI] that each adjunction F a G gives rise to a monad GF . The expec-
tation monad arises from a slightly more complicated situation, involving two composable adjunctions.
This situation is captured abstractly in the following result.
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Lemma 4. Consider two composable adjunctions F a G and H a K in a situation:

A
F

((

T=GF

��

S=GKHF

FF ⊥ B
G

hh

H
((⊥ C

K

hh

with monads T = GF induced by the adjunction F a G and S = GKHF induced by the (composite)
adjunction HF a GK.

Then there is a map of monads T ⇒ S given by the unit η of the adjunction H a K in:

T = GF
GηHaKF // GKHF = S. (6)

It gives rise a functor Alg(S)→Alg(T ) between the associated categories of Eilenberg-Moore algebras,
and thus to a commuting diagram:

C
K

��

// Alg(S)

(−)◦GηF
��

B

G !!CCCCCCC
// Alg(T )

Uzztttttttt

A

(7)

where the horizontal arrows are the so-called comparison functors.

Proof Easy. We unravel the relevant ingredients for future use. The unit and counit of the composite
adjunction HF a GK are:

ηHFaGK = GηHaKF ◦ ηFaG : id =⇒ GKHF = S

εHFaGK = εHaK ◦ HεFaGK : HFGK =⇒ id.

This means that the monads T and S have multiplications:

µT = GεFaGF : T 2 = FGFG =⇒ FG = T

µS = GKεHaKHF ◦ GKHεFaGKHF : S2 = GKHFGKHF =⇒ GKHF = S.

The comparison functor KT : B→ Alg(T ) is:

KT (X) =
(
T GX = GFGX

G(εFaG
X )

−−−−→ GX
)
.

Similarly, KS : A→ Alg(S) is:

KS(Y ) =
(
SGKY = GKHFGKY

GK(εHaK
Y )◦GKH(εFaG

KY )
−−−−−−−−−−−−−→ GKY

)
. �

Remark 1. Later on in Section 8 we will construct a left adjoint to the comparison functor C→ Alg(S)
in (7). It is already almost there, in this abstract situation, using the composite adjunction HF a KG.
However, suitable restrictions have to used, which cannot be expressed at this abstract level. In the more
concrete setting described below, the adjunction H a K is of a special kind, involving a dualizing object.
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The composable adjunctions that form the basis of the expectation monad are:

Sets
D

++
⊥ Alg(D)

U

kk

Conv(−,[0,1])
,,

⊥ EModop

EMod(−,[0,1])
kk

Conv

(8)

The adjunction on the left is the standard adjunction between a category of algebras Alg(D) of the
distribution monad (see Subsection 2.1) and its underlying category. The adjunction on the right will be
described in the next section.

3 Effect modules

This section introduces the essentials of effect modules and refers to [19, 21] for further details. Intu-
itively, effect modules are vector spaces, not with the real or complex numbers as scalars, but with scalars
from the unit interval [0,1]⊆R. Also, the addition operation + on vectors is only partial; it is written as
>. These effect modules occur in [32] under the name ‘convex effect algebras’.

More precisely, an effect module is an effect algebra E with an action [0,1]⊗ E → E for scalar
multiplication. An effect algebra E carries both:

• a partial commutative monoid structure (0,>); this means that > is a partial operation E×E→ E
which is both commutative and associative, taking suitably account of partiality, with 0 as neutral
element;

• an orthosupplement (−)⊥ : E → E. One writes x ⊥ y if the sum x > y is defined; x⊥ is then the
unique element with x> x⊥ = 1, where 1 = 0⊥; further x⊥ 1 holds only for x = 0.

These effect algebras carry a partial order given by x ≤ y iff x > z = y, for some element z. Then x ⊥ y
iff x ≤ y⊥ iff y ≤ x⊥. The unit interval [0,1] is the prime example of an effect algebra with partial sum
r > s = r+ s if r+ s≤ 1; then r⊥ = 1− r.

A homomorphism f : E→D of effect algebras satisfies f (1)= 1 and: if x⊥ x′ in E, then f (x)⊥ f (x′)
in D and f (x > x′) = f (x)> f (x′). It is easy to deduce that f (x⊥) = f (x)⊥ and f (0) = 0. This yields a
category, written as EA. It carries a symmetric monoidal structure ⊗ with the 2-element effect algebra
{0,1} as tensor unit (which is at the same time the initial object). The usual multiplication of real
numbers (probabilities in this case) yields a monoid structure on [0,1] in the category EA. An effect
module is then an effect algebra with an [0,1]-action [0,1]⊗E → E. Explicitly, it can be described as a
scalar multiplication (r,x) 7→ rx satisfying:

1x = x (r+ s)x = rx+ sx if r+ s≤ 1

(rs)x = r(sx) r(x> y) = rx> ry if x⊥ y.

In particular, if r+ s≤ 1, then a sum rx> sy always exists (see [32]).

Example 2. The unit interval [0,1] is again the prime example, this time for effect modules. But also, for
an arbitrary set X , the set [0,1]X of all functions X → [0,1] is an effect module, with structure inherited
pointwise from [0,1]. Another example, occurring in integration theory, is the set [X →s [0,1]] of simple
functions X → [0,1], having only finitely many output values (also known as ‘step functions’).
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A morphism E → D in the category EMod of such effect modules is a function f : E → D between
the underlying sets satisfying:

f (rx) = r f (x) f (1) = 1 f (x> y) = f (x)> f (y) if x⊥ y.

We collect some of the results we use about effect modules (see [21] for more information).

Proposition 5. 1. For each effect module E the homset EMod(E, [0,1]) is a convex set. In the other
direction, each convex set X gives rise to an effect module Conv(X , [0,1]). This gives the adjunc-
tion on the right in (8), with [0,1] as dualizing object

2. Let poVectu be the category of ordered vector spaces with a strong unit u, and with linear, mono-
tone mappings that preserve the unit as morphisms. The “partialization” mapping P̂a : poVectu→
EMod that takes a space V to the interval [0,u] = {x ∈ V | 0 ≤ x ≤ u} is an equivalence of cate-
gories.

The effect algebra structure on the set Conv(X , [0,1]) of affine maps to [0,1] is obtained pointwise:
f >g is defined if f (x)+g(x)≤ 1 for all x∈X , and in that case f >g at x∈X is f (x)+g(x). The orthosup-
plement is also obtained pointwise: ( f⊥)(x) = 1− f (x). Scalar multiplication is done similarly (r f )(x) =
r( f (x)). In the reverse direction, each effect module E gives rise to a convex set EMod(E, [0,1]) of ho-
momorphisms, with pointwise convex sums. The adjunction Conv(−, [0,1]) a EMod(−, [0,1]) arises in
the standard way, with unit and counit given by evaluation.

That the element u in point 2 of the proposition is a strong unit means that for each x there is an n∈N
with nu≥ x. We write T̂o : EMod→ poVectu for the “totalization” part of the equivalence. We will not
describe T̂o in detail here (see [21] for details) but roughly T̂o(E) is constructed by adding undefined
sums and differences such as 1 > 1 and 0	1 to E. The essential part is that T̂o(E) is an ordered vector
space with a strong unit whose unit interval is isomorphic to E. For example T̂o([0,1]) ∼= R and more
generally if E is a collection of a certain type of functions (e.g. affine) X → [0,1] then T̂o(E) is usually
the collection of those same type of functions only from X to R.

If V ∈ poVectu and the unit u is Archimedean in the sense that x ≤ ru for all r > 0 implies x ≤ 0
then V is called an order unit space. The Archimedean property of the unit can be used to define a norm
‖x‖= inf{r ∈ [0,1] | − ru≤ x≤ ru}. We denote by OUS the full subcategory of poVectu consisting of
all order unit spaces.

This Archimedean property can also be expressed on the effect module level but some caution is
required as effect modules contain no elements less than 0 and sums may not be defined. The following
formulation works: an effect module is said to be Archimedean if x ≤ y follows from 1

2 x ≤ 1
2 y > r

2 1 for
all r ∈ (0,1]. All Archimedean effect modules form a full subcategory AEMod ↪→ EMod. Of course
with this definition comes a theorem.

Proposition 6. The equivalence poVectu ' EMod, between partially ordered vector spaces with a
strong unit and effect modules, restricts to an equivalence OUS ' AEMod, between order unit spaces
and Archimedean effect modules.

Proof We only check that if E ∈ AEMod then its totalization satisfies T̂o(E) ∈ OUS; the rest is left to
the reader. Suppose E ∈ AEMod and x ∈ T̂o(E) is such that x ≤ ru for all r ∈ (0,1]. The trick is to
transform x into an element in the unit interval [0,u] ∼= E. Since u is a strong unit we can find a natural
number n such that x+nu≥ 0, and again using the fact that u is a strong unit we can find a positive real
number s < 1 such that sx+nsu≤ u. Hence sx+nsu∈ [0,u]∼= E. Now, for r ∈ (0,1] we have sx≤ x≤ ru
and so s

2 x+ ns
2 u ≤ ns

2 u+ r
2 u. Thus, by the Archimedean property of E, we get sx+ nsu ≤ nsu. Hence

sx≤ 0 and therefore x≤ 0. �
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Since E ∈ AEMod is isomorphic to the unit interval of its totalization T̂o(E), E inherits a metric
from the normed space T̂o(E). This metric can be described wholly in terms of E. However the partial
addition does force us into a somewhat awkward definition: for x,y ∈ E their distance d(x,y) ∈ [0,1] can
be defined as:

d(x,y) = max
(

inf{r ∈ (0,1] | 1
2 x≤ 1

2 y> r
2 1},

inf{r ∈ (0,1] | 1
2 y≤ 1

2 x> r
2 1}

)
.

(9)

A trivial consequence is the following lemma.
Lemma 7. A map of effect modules f : M→M′ between Archimedean effect modules M,M′ is automat-
ically non-expansive: d′( f (x), f (y))≤ d(x,y), for all x,y ∈M. �

Of particular interest later in this paper are Archimedean effect modules that are complete in their
metric. We call these Banach effect modules and denote by BEMod the full subcategory of all Banach
effect modules. The previous lemma implies that each map in BEMod is automatically continuous.

Since an order unit space is complete in its metric if and only if its unit interval is complete we get
the following result.
Proposition 8. The equivalences from Proposition 6 restrict further to an equivalence between Banach
effect modules and the full subcategory BOUS ↪→OUS of those order unit spaces that are also Banach
spaces:

BOUS� _

��

' // BEMod� _

��
OUS� _

��

' // AEMod� _

��
poVectu '

V 7→([0,u]⊆V )
// EMod

Proof Like in the proof of Proposition 6 one transforms a Cauchy sequence in T̂o(E) into a sequence in
[0,u]∼= E. �

Example 3. We review Example 2: both the effect modules [0,1] and [0,1]X are Archimedean, and also
Banach effect modules. Norms and distances in [0,1] are the usual ones, but limits in [0,1]X are defined
via the supremum (or uniform) norm: for p ∈ [0,1]X , we have:

‖p‖ = inf{r ∈ [0,1] | p≤ r ·u} where u is the constant function λx.1

= inf{r ∈ [0,1] | ∀x ∈ X . p(x)≤ r}
= sup{p(x) | x ∈ X}
= ‖p‖∞.

The latter notation ‖p‖∞ is common for this supremum norm. The associated metric on [0,1]X is accord-
ing to (9):

d(p,q) = max
(

inf{r ∈ (0,1] | ∀x ∈ X . 1
2 p(x)≤ 1

2 q(x)+ r
2},

inf{r ∈ (0,1] | ∀x ∈ X . 1
2 q(x)≤ 1

2 p(x)+ r
2}
)
.

= max
(

sup{p(x)−q(x) | x ∈ X with p(x)≥ q(x)},
sup{q(x)− p(x) | x ∈ X with p(x)≤ q(x)}

)
= sup{|p(x)−q(x)| | x ∈ X}
= ‖p−q‖∞.
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Recall that the subset [X →s [0,1]] ⊆ [0,1]X of simple functions contains those p ∈ [0,1]X that take
only finitely many values, i.e. for which the set {p(x) | x ∈ X} is finite. If we write {p(x) | x ∈ X} =
{r1, . . . ,rn} ⊆ [0,1], then we obtain n disjoint non-empty sets Xi = {x ∈ X | p(x) = ri} covering X . For a
subset U ⊆ X , let 1U : X → [0,1] be the corresponding “characteristic” simple function, with 1U(x) = 1
iff x ∈U and 1U(x) = 0 iff x 6∈U . Hence we can write such a simple function p in a normal form in the
effect module [X →s [0,1]] of simple functions, namely as finite sum of characteristic functions:

p = >i ri ·1Xi . (10)

Hence ‖p‖= max{r1, . . . ,rn}. These simple functions do not form a Banach effect module, since simple
functions are not closed under countable suprema.

Lemma 9. The inclusion of simple functions on a set X is dense in the Banach effect module of all fuzzy
predicates on X:

[X →s [0,1]] // dense // [0,1]X

Explicitly, each predicate p ∈ [0,1]X can be written as limit p = lim
n→∞

pn of simple functions pn ∈ [0,1]X

with pn ≤ p.

Proof Define for instance:

pn(x) = 0.d1d2 · · ·dn where di = the i-th decimal of p(x) ∈ [0,1].

Clearly, pn is simple, because it can take at most 10n different values, since di ∈ {0,1, . . . ,9}. Also, by
construction, pn ≤ p. For each ε > 0, take N ∈ N such that for all decimals di we have:

0.00 · · ·00︸ ︷︷ ︸
N times

d1d2d3 · · · < ε.

Then for each n≥ N we have p(x)− pn(x)< ε , for all x ∈ X , and thus d(p, pn)≤ ε . �

3.1 Hahn-Banach style extension for effect modules

In this subsection we look at a form of Hahn-Banach theorem for effect modules. We need the following
version of the Hahn-Banach extension theorem for partially ordered vector spaces.

Proposition 10. Let E be a partially ordered vector space and let F ⊆ E be a cofinal subspace (i.e. for
all x ∈ E, x≥ 0 there is y ∈ F with x≤ y). Suppose f : F→R is a monotonic linear function. Then there
is a monotonic linear function g : E→ R with g|F = f in:

F

f ""EEEEEEE
� � // E

∃g
���
�

R

Proof We define p : E→ R by:

p(x) = inf{ f (y) | y ∈ F and y≥ x}.
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Notice that p(x) is finite since we can find y,y′ ∈ F with y ≤ x ≤ y′ because F is cofinal. We need to
check that p is sublinear. So let x,x′ ∈ E and ε > 0 then we can find y,y′ ∈ F with y ≥ x,y′ ≥ x′, such
that f (y)< p(x)+ ε > 0 and f (y′)< p(x′)+ ε > 0. Therefore:

p(x+ x′) ≤ f (y+ y′) = f (y)+ f (y′) < p(x)+ p(x′)+2ε > 0.

Also for r > 0 it is obvious that p(r · x) = r · p(x).
Having established that p is sublinear we note that for y ∈ F we have p(y) = f (y) since f is mono-

tonic. Hence we can apply the standard (dominated) extension version of Hahn-Banach to find a linear
function g : E→R with g < p and g|F = f . Since if x≤ 0 then p(x)≤ 0 because 0 ∈ F , hence it follows
that g is monotonic. �

This version translates effortlessly to effect modules

Proposition 11. Let E be an effect module and F ⊆ E a sub effect module of E. Suppose f : F → [0,1]
is an effect module map, then there is an effect module map g : E→ [0,1] with g|F = E.

Proof We translate effect modules to order unit spaces and apply the previous result. Since u ∈ T̂o(F)
it’s clear that T̂o(F) is cofinal in T̂o(E). Hence using the previous proposition we can extend T̂o( f )
to h : T̂o(E)→ R. Hence by restriction to unit intervals [0,u], both in T̂o(E) and in R we get the map
g : E→ [0,1] that we are looking for. �

Unfortunately the class of effect module morphisms is too limited to get a full version of the separa-
tion theorem. Consider for example E = [0,1]2 with the two compact convex subsets C1 = {(r, 1

2 +r) | r ∈
[0, 1

2 ]} and C2 = {(1
2 + r,r) | r ∈ [0, 1

2 ]}. If f : E → [0,1] is an effect module morphism then the image
f (C1) is the interval [ f (0, 1

2), f (1
2 ,1)], and since f (1

2 ,
1
2) =

1
2 it follows that this interval has length 1

2 .
Analogously the interval f (C2) is also an interval of length 1

2 so the two must overlap.

4 The expectation monad

We now apply Lemma 4 to the composable adjunctions in (8) and take a first look at the results. In
particular, we investigate different ways of describing the expectation monad E that arises in this way.

Of the two monads resulting from applying Lemma 4 to the composable adjunctions in Diagram (8),
the first one is the well-known distribution monad D on Sets, arising from the adjunction Sets �
Alg(D) = Conv. The second monad on Sets arises from the composite adjunction Sets � EModop

is less familiar (see Section 10 for more information and references). It is what we call the expectation
monad, written here as E . Following the description in Lemma 4 this monad is:

X 7−→ EMod
(

Conv
(
D(X), [0,1]

)
, [0,1]

)
.

Since D : Sets→ Alg(D) = Conv is the free algebra functor, the homset Conv(D(X), [0,1]) is isomor-
phic to the set [0,1]X of all maps X → [0,1] in Sets. Elements of this set [0,1]X can be understood as
fuzzy predicates on X . As mentioned, they form a Banach effect module via pointwise operations. Thus
we describe the expectation monad E : Sets→ Sets as:

E (X) = EMod
(
[0,1]X , [0,1]

)
E
(
X

f−→ Y
)

= λh ∈ E (X).λ p ∈ [0,1]Y .h(p ◦ f ).
(11)
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The unit ηX : X → E (X) is given by:

ηX(x) = λ p ∈ [0,1]X . p(x).

And the multiplication µX : E 2(X)→ E (X) is given on h : [0,1]E (X)→ [0,1] in EMod by:

µX(h) = λ p ∈ [0,1]X .h
(

λk ∈ E (X).k(p)
)
.

It is not hard to see that η(x) and µ(h) are homomorphisms of effect modules. We check explicitly that
the µ-η laws hold and leave the remaining verifications to the reader. For h ∈ E (X),(

µX ◦ ηE (X)

)
(h) = µX

(
ηE (X)(h)

)
= λ p ∈ [0,1]X .ηE (X)(h)

(
λk ∈ E (X).k(p)

)
= λ p ∈ [0,1]X .

(
λk ∈ E (X).k(p)

)
(h)

= λ p ∈ [0,1]X .h(p)

= h(
µX ◦ E (ηX)

)
(h) = µX

(
E (ηX)(h)

)
= λ p ∈ [0,1]X .E (ηX)(h)

(
λk ∈ E (X).k(p)

)
= λ p ∈ [0,1]X .h

(
(λk ∈ E (X).k(p)) ◦ ηX

)
= λ p ∈ [0,1]X .h

(
λx ∈ X .ηX(x)(p)

)
= λ p ∈ [0,1]X .h

(
λx ∈ X . p(x)

)
= λ p ∈ [0,1]X .h(p)

= h.

Remark 2. (1) We think of elements h ∈ E (X) as measures. Later on, in Theorem 3, it will be proven
that E (X) is isomorphic to the set of finitely additive measures P(X)→ [0,1] on X . The application h(p)
of h ∈ E (X) to a function p ∈ [0,1]X may then be understood as integration

∫
pdh, giving the expected

value of the stochastic variable/predicate p for the measure h.
(2) The description E (X) = EMod

(
[0,1]X , [0,1]

)
of the expectation monad in (11) bears a certain

formal resemblance to the ultrafilter monad UF from Subsection 2.2. Recall from (3) that:

UF (X) ∼= BA
(
{0,1}X , {0,1}

)
.

Thus, the expectation monad E can be seen as a “fuzzy” or “probabilistic” version of the ultrafilter
monad UF , in which the set of Booleans {0,1} is replaced by the set [0,1] of probabilities. The relation
between the two monads is further investigated in Section 5.

(3) Using the equivalence poVectu'EMod from Proposition 6 via totalization we may equivalently
describe the expectation monad as the homset:

E (X) ∼= poVectu
(
RX , R

)
.

It contains the linear monotone functions RX → R that send the unit λx.1 ∈ RX to 1 ∈ R.

The following result is not a surprise, given the resemblance between the unit and multiplication for
the expectation monad and the ones for the continuation monad (see Subsection 2.3).
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Lemma 12. The inclusion maps:

E (X) = EMod
(
[0,1]X , [0,1]

) � � // [0,1]([0,1]
X )

form a map of monads, from the expectation monad to the continuation monad (with the set [0,1] as
constant). �

We conclude with an alternative description of the sets E (X), in terms of finitely additive measures,
described as effect algebra homomorphisms. It also occurs as [18, Cor. 4.3].
Theorem 3. For each set X there is a bijection:

E (X) = EMod
(
[0,1]X , [0,1]

)
Φ

∼=
// EA

(
P(X), [0,1]

)
given by Φ(h)(U) = h(1U).

Proof We first check that Φ is injective: assume Φ(h) = Φ(h′), for h,h′ ∈ E (X). We need to show
h(p) = h′(p) for an arbitrary p ∈ [0,1]X . We first prove h(q) = h′(q) for a simple function q ∈ [0,1]X .
Recall that such a simple q can be written as q =>i ri1Xi , like in (10), where the (disjoint) subsets Xi ⊆ X
cover X . Since h,h′ ∈ E (X) are maps of effect modules we get:

h(q) = ∑i rih(1Xi) = ∑i riΦ(h)(Xi) = ∑i riΦ(h′)(Xi) = ∑i rih′(1Xi) = h′(q).

For an arbitrary p ∈ [0,1]X we first write p = limn pn as limit of simple functions pn like in Lemma 9.
Lemma 7 implies that h,h′ are continuous, and so we get h = h′ from:

h(p) = limn h(pn) = limn h′(pn) = h′(p).

For surjectivity of Φ assume a finitely additive measure m : P(X) → [0,1]. We need to define
a function h ∈ E (X) with Φ(h) = m. We define such a h first on a simple function q = >i ri1Xi as
h(q) = ∑i rim(Xi). For an arbitrary p ∈ [0,1]X , written as p = limn pn, like in Lemma 9, we define
h(p) = limn h(pn). Then Φ(h) = m, since for U ⊆ X we have:

Φ(h)(U) = h(1U) = m(U). �

The inverse h = Φ−1(m) that is constructed in this proof may be understood as an integral h(p) =∫
pdm. The precise nature of the bijection Φ remains unclear at this stage since we have not yet identified

the (algebraic) structure of the sets E (X). But via this bijection we can understand mapping a set to its
finitely additive measures, i.e. X 7→ EA(P(X), [0,1]), as a monad.

Yet another perspective is useful in this context. The characteristic function mapping:

[0,1]×P(X) // [0,1]X given by (r,U)
� // r ·1U

is a bihomomorphism of effect modules. Hence it gives rise to a map of effect modules [0,1]⊗P(X)→
[0,1]X , where the tensor product [0,1]⊗P(X) forms a more abstract description of the effect module of
simple (step) functions [X →s [0,1]] from Lemma 9 (see also [18, Thm. 5.6]). Lemma 9 says that this
map is dense. This gives a quick proof of Theorem 3:

E (X) = EMod
(
[0,1]X , [0,1]

)
∼= EMod

(
[0,1]⊗P(X), [0,1]

)
by denseness

∼= EA
(
P(X), [0,1]

)
.

This last isomorphism is standard, because [0,1]⊗P(X) is the free effect module on P(X).
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5 The expectation and ultrafilter monads

In this section we show that the sets E (X) carry a compact Hausdorff structure and we identify its
topology. The unit interval [0,1] plays an important role. It is a compact Hausdorff space, which means
that it carries an algebra of the ultrafilter monad, see Subsection 2.2. We shall write this algebra as
ch = ch[0,1] : UF ([0,1])→ [0,1]. What this map precisely does is described in Example 1; but mostly
we use it abstractly, as an UF -algebra. The technique we use to define the following map of monads is
copied from Lemma 3.

Proposition 13. There is a map of monads τ : UF =⇒ E , given on an ultrafilter F ∈ UF (X) and
p ∈ [0,1]X by:

τX(F )(p) = ch
(
UF (p)(F )

)
= inf{s ∈ [0,1] | [0,s] ∈UF (p)(F )} by (5)

= inf{s ∈ [0,1] | {x ∈ X | p(x)≤ s} ∈F}.

In this description the functor UF is applied to p, as function X → [0,1], giving UF (p) : UF (X)→
UF ([0,1]).

Proof We first have to check that τ is well-defined, i.e. that τX(F ) : [0,1]X → [0,1] is a morphism of
effect modules.

• Preservation τX(F )(r · p) = r · pτX(F ) of multiplication with scalar r ∈ [0,1]. This follows by
observing that multiplication r · (−) : [0,1]→ [0,1] is a continuous function, and thus a morphism
of algebras in the square below.

UF ([0,1])
UF (r·(−)) //

ch
��

UF ([0,1])

ch
��

[0,1]
r·(−)

// [0,1]

Thus:
τ(F )(r · p) =

(
ch ◦UF (r · (−) ◦ p)

)
(F )

=
(
r · (−) ◦ ch ◦UF (p)

)
(F ) = r · τ(F )(p).

• Preservation of >, is obtained in the same manner, using that addition + : [0,1]× [0,1]→ [0,1] is
continuous.

• Constant functions λx.a ∈ [0,1]X , including 0 and 1, are preserved:

τX(F )(λx.a) = ch
(
UF (λx.a)(F )

)
= ch

(
{U ∈P([0,1]) | (λx.a)−1(U) ∈F}

)
= ch

(
{U ∈P([0,1]) | {x ∈ X | a ∈U} ∈F}

)
= ch

(
{U ∈P([0,1]) | a ∈U}

)
since /0 6∈F

= ch(η(a))

= a.
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We leave naturality of τ and commutation with units to the reader and check that τ commutes with
multiplications µE and µUF of the expectation and ultrafilter monads. Thus, for A ∈ UF 2(X) and
p ∈ [0,1]X , we calculate:(

µE ◦ τ ◦UF (τ)
)
(A )(p) = µ

(
τ
(
UF (τ)(A )

)))
(p)

= τ
(
UF (τ)(A )

)(
λk.k(p)

)
= ch

(
UF (λk.k(p))

(
UF (τ)(A )

))
= ch

(
UF (λF .τ(F )(p))(A )

))
= ch

(
UF (λF .ch(UF (p)(F )))(A )

))
= ch

(
UF (ch ◦UF (p))(A )

))
=

(
ch ◦UF (ch ◦UF (p))

)
(A )

=
(
ch ◦UF (ch) ◦UF 2(p)

)
(A )

=
(
ch ◦ µUF ◦UF 2(p)

)
(A )

=
(
ch ◦UF (p) ◦ µUF

)
(A )

= ch
(
UF (p)(µUF (A ))

)
=

(
τ ◦ µUF

)
(A )(p). �

Corollary 14. There is a functor Alg(E )→ Alg(UF ) = CH, by pre-composition:
(
E (X)

α−→ X
)
7−→(

UF (X)
α◦τ−−→ X

)
. This functor has a left adjoint by Lemma 1.

In particular, the underlying set X of each E -algebra α : E (X)→ X carries a compact Hausdorff
topology, with U ⊆ X closed iff for each F ∈UF (X) with U ∈F one has α(τ(F )) ∈U, as described
in Subsection 2.2. �

With respect to this topology on E (X), several maps are continuous.

Lemma 15. The following maps are continuous functions.

UF (X)
τX // E (X) E (X)

α

algebra
// X E (X)

E ( f ) // E (Y ) E (X)
evp =

λh.h(p)
// [0,1].

Proof One shows that these maps are morphisms of UF -algebras. For instance, τX is continuous be-
cause it is a map of monads: commutation with multiplications, as required in (2), precisely says that it
is a map of algebras, in the square on the left below.

UF 2(X)

µX
��

UF (τX ) // UF (E (X))

µX◦τE (X)
��

UF (E (X))

µX◦τE (X)
��

UF (α) // UF (X)

α◦τX
��

UF (X)
τX

// E (X) E (X)
α

// X

The rectangle on the right expresses that an Eilenberg-Moore algebra α : E (X)→ X is a continuous
function. It commutes by naturality of τ:

α ◦ τX ◦UF (α) = α ◦ E (α) ◦ τE (X) = α ◦ µX ◦ τE (X).
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For f : X → Y , continuity of E ( f ) : E (X)→ E (Y ) follows directly from naturality of τ . Finally, for
p ∈ [0,1]X the map evp = λh.h(p) : E (X)→ [0,1] is continuous because for F ∈UF (E (X)),(

evp ◦ µX ◦ τE (X)

)
(F ) = µX

(
τE (X)(F )

)
(p)

= τE (X)(F )(λk.k(p))

= τE (X)(F )(evp)

= ch
(
UF (evp)(F )

)
=

(
ch ◦UF (evp)

)
(F ). �

The next step is to give a concrete description of this compact Hausdorff topology on sets E (X), as
induced by the algebra UF (E (X))→ E (X).

Proposition 16. Fix a set X. For a predicate p ∈ [0,1]X and a rational number s ∈ [0,1]∩Q write:

�s(p) = {h ∈ E (X) | h(p)> s}.

These sets �s(p)⊆ E (X) form a subbasis for the topology on E (X).

Proof We reason as follows. The subsets �s(p) are open in the compact Hausdorff topology induced on
E (X) by the algebra structure UF (E (X))→ E (X). They form a subbasis for a Hausdorff topology on
E (X). Hence by Lemma 2 this topology is the induced one. We now elaborate these steps.

The Eilenberg-Moore algebra UF (E (X))→ E (X) is given by µX ◦ τE (X). Hence the associated
closed sets U ⊆ E (X) are those satisfying U ∈F ⇒ µX(τE (X)(F )) ∈U , for each F ∈UF (E (X)), see
Subsection 2.2. We wish to show that ¬�s(p) = {h | h(p)≤ s} ⊆ E (X) is closed. We reason backwards,
starting with the required conclusion.

µ(τ(F )) ∈ ¬�s(p)

⇐⇒ µ(τ(F ))(p)≤ s

⇐⇒ ch
(
UF (λk.k(p))(F )

)
∈ [0,s]

since µ(τ(F ))(p) = τ(F )(λk.k(p)) = ch
(
UF (λk.k(p))(F )

)
⇐= [0,s] ∈UF (λk.k(p))(F )

since [0,s]⊆ [0,1] is closed

⇐⇒ (λk.k(p))−1([0,s]) ∈F

⇐⇒ {h ∈ E (X) | h(p) ∈ [0,s]}= ¬�s(p) ∈F .

Hence ¬�s(p)⊆ E (X) is closed, making �s(p) open.
Next we need to show that these �s(p)’s give rise to a Hausdorff topology. So assume h 6= h′ ∈ E (X).

Then there must be a p ∈ [0,1]X with h(p) 6= h′(p). Without loss of generality we assume h(p)< h′(p).
Find an s ∈ [0,1]∩Q with h(p)< s < h′(p). Then h′ ∈�s(p). Also:

h(p⊥) = 1−h(p) > 1− s > 1−h′(p) = h′(p⊥).

Hence h ∈�1−s(p⊥). These sets �s(p) and �1−s(p⊥) are disjoint, since: k ∈�s(p)∩�1−s(p⊥) iff both
k(p)> s and 1− k(p)> 1− s, which is impossible. �
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As is well-known, ultrafilters on a set X can also be understood as finitely additive measures P(X)→
{0,1}. Using Theorem 3 we can express more precisely how the expectation monad E is a probabilistic
version of the ultrafilter monad UF , namely via the descriptions:

E (X) ∼= EA
(
P(X), [0,1]

)
and UF (X) ∼= EA

(
P(X),{0,1}

)
.

We have EA
(
P(X),{0,1}

)
= BA

(
P(X),{0,1}

)
because in general, for Boolean algebras B,B′ a ho-

momorphism of Boolean algebras B→ B′ is the same as an effect algebra homomorphism B→ B′.

Lemma 17. The components τX : UF (X)→ E (X) are injections.

Proof Because there are isomorphisms:

UF (X)
o

τX // E (X)
o

EA
(
P(X),{0,1}

)
// // EA

(
P(X), [0,1]

) �

6 The expectation and distribution monads

We continue with the implications of Lemma 4 in the current situation, especially with the natural trans-
formation (6). This leads to convex structure on sets E (X).

Lemma 18. There is a map of monads:

σ : D =⇒ E given by σX(ϕ) = λ p ∈ [0,1]X . ∑x ϕ(x) · p(x), (12)

where the dot · describes multiplication in [0,1].
All components σX : D(X)→ E (X) are injections. And for finite sets X the component at X is an

isomorphism D(X)
∼=−→ E (X).

With this result we have completed the positioning of the expectation monad in Diagram (1), in
between the distribution and ultrafilter monad on the hand, and the continuation monad on the other.

Proof By construction via (6) the natural transformation σ : D ⇒ E is a map of monads. Next, assume
X is finite, say X = {x1, . . . ,xn}. Each p ∈ [0,1]X is determined by the values p(xi) ∈ [0,1]. Using the
effect module structure of [0,1]X , this p can be written as sum of scalar multiplications:

p = p(x1) ·1x1 > · · ·> p(xn) ·1xn ,

where 1xi : X → [0,1] is the characteristic function of the singleton {xi} ⊆ X . A map of effect modules
h ∈ E (X) = EMod([0,1]X , [0,1]) will thus send such a predicate p to:

h(p) = h
(

p(x1) ·1x1 > · · ·> p(xn) ·1xn

)
= p(x1) ·h(1x1)+ · · ·+ p(xn) ·h(1xn),

since > is + in [0,1]. Hence h is completely determined by these values h(1xi) ∈ [0,1]. But since
>i 1xi = 1 in [0,1]X we also have ∑i h(1xi) = 1. Hence h can be described by the convex sum ϕ ∈D(X)
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given by ϕ(x) = h(1x). Thus we have a bijection E (X) ∼= D(X). In fact, σX describes (the inverse of)
this bijection, since:

σX(ϕ)(p) = ∑i ϕ(xi) · p(xi)

= ∑i p(xi) ·h(1xi)

= h
(
>i p(xi) ·1xi

)
= h(p). �

Corollary 19. There is a functor Alg(E )→ Alg(D) = Conv, by pre-composition:
(
E (X)

α−→ X
)
7−→(

D(X)
α◦σ−−→ X

)
. It has a left adjoint by Lemma 1. �

Explicitly, for each E -algebra α : E (X)→ X , the set X is a convex set, with sum of a formal convex
combination ∑i rixi given by the element:

α
(
σX(∑i rixi)

)
= α

(
λ p ∈ [0,1]X . ∑i ri · p(xi)

)
∈ X .

Lemma 18 implies that if the carrier X is finite, the algebra structure α corresponds precisely to such
convex structure on X . If X is non-finite we still have to find out what α involves.

Here is another (easy) consequence of Lemma 18.

Corollary 20. On the first few finite sets: empty 0, singleton 1, and two-element 2 one has:

E (0) ∼= 0 E (1) ∼= 1 E (2) ∼= [0,1].

The isomorphism in the middle says that E is an affine functor.

Proof The isomorphisms follow easily from E (X)∼= D(X) for finite X . �

Remark 3. (1) The natural transformation σ : D ⇒ E from (12) implicitly uses that the unit interval
[0,1] is convex. This can be made explicit in the following way. Describe this convexity via an algebra
cv: D([0,1])→ [0,1]. Then we can equivalently describe σ as:

σX(ϕ)(p) = cv
(
D(p)(ϕ)

)
.

This alternative description is similar to the construction in Proposition 13, for a natural transformation
UF ⇒ E (see also Lemma 3).

(2) From Corollaries 14 and 19 we know that the sets E (X) are both compact Hausdorff and convex.
This means that we can take free extensions of the maps τ : UF (X)→ E (X) and σ : D(X)→ E (X),
giving maps D(UF (X))→ E (X) and UF (D(X))→ E (X), etc. The latter map is the composite:

UF (D(X))
UF (σ)// UF (E (X))

τ // E 2(X)
µ // E (X).

Using Example 1, it can be described more concretely on F ∈UF (D(X)) and p ∈ [0,1]X as:

inf{s ∈ [0,1] | {ϕ ∈D(X) | ∑x ϕ(x) · p(x)≤ s} ∈F}.

The next result is the affine analogue of Lemma 15.

Lemma 21. The following maps are affine functions.

D(X) // σX // E (X) E (X)
α

algebra
// X E (X)

E ( f ) // E (Y ) E (X)
evp =

λh.h(p)
// [0,1].
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Proof Verifications are done like in the proof of Lemma 15. We only do the last one. We need to prove
that the following diagram commutes,

D(E (X))

µX◦σX
��

D(evp) // D([0,1])

cv
��

E (X) evp
// [0,1]

where the algebra cv interprets formal convex combinations as actual combinations. For a distribution
Φ = ∑i rihi ∈D(E (X)) we have:(

evp ◦ µ ◦ σ
)
(Φ) = µ

(
σ(Φ)

)
(p)

= σ(Φ)(evp)

= ∑i ri · evp(hi)

= cv
(

∑i rievp(hi)

= cv
(
D(evp)(∑i rihi)

)
=

(
cv ◦D(evp)

)
(Φ). �

The D-algebras obtained from E -algebras turn out to be continuous functions. This connects the
convex and topological structures in such algebras.

Lemma 22. The maps σX : D(X) � E (X) are (trivially) continuous when we provide D(X) with the
subspace topology with basic opens �s(p)⊆D(X) given by restriction: �s(p) = {ϕ ∈D(X) | ∑x ϕ(x) ·
p(x)> s}, for p ∈ [0,1]X and s ∈ [0,1]∩Q.

For each E -algebra α : E (X)→ X the associated D-algebra α ◦ σ : D(X)→ X is then also contin-
uous.

Proof Lemma 15 states that E -algebras α : E (X)→ X are continuous. Hence α ◦ σ : D(X)→ X , as
composition of continuous maps, is also continuous. �

The following property of the map of monads D ⇒ E will play a crucial role.

Proposition 23. The inclusions σX : D(X)� E (X) are dense: the topological closure of D(X) is the
whole of E (X).

Proof We need to show that for each non-empty open U ⊆ E (X) there is a distribution ϕ ∈D(X) with
σ(ϕ) ∈U . By Proposition 16 we may assume U is of the form U =�s1(p1)∩·· ·∩�sm(pm), for certain
si ∈ [0,1]∩Q and pi ∈ [0,1]X . For convenience we do the proof for m = 2. Since U is non-empty there
is some inhabitant h ∈�s1(p2)∩�s2(p2). Thus h(pi)> si. We claim there are simple functions qi ≤ pi

with h(qi)> si.
In general, this works as follows. If h(p)> s, write p = limn pn for simple functions pn ≤ p, like in

Lemma 9. Then h(p) = limn h(pn)> s. Hence h(pn)> s for some simple pn ≤ p.
In a next step we write the simple functions as weighted sum of characteristic functions, like in (10).

Thus, let
q1 = > j r j1U j and q2 = >k tk1Vk ,

where these U j ⊆ X and Vk ⊆ X form non-empty partitions, each covering X . We form a new, refined
partition (W` ⊆ X)`∈L consisting of the non-empty intersections U j ∩Vj, and choose x` ∈W`. Then:
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• ∑` h(1W`
) = h(>` 1W`

) = h(1X) = 1.

• There are subsets L j ⊆ L so that each U j ⊆ X can be written as disjoint union U j =
⋃

`∈L j
W`.

• Similarly, Vk =
⋃

`∈Lk
W` for subsets Lk ⊆ L.

We take as distribution ϕ = ∑`∈L h(1W`
)x` ∈D(X). Then σ(ϕ) ∈�si(pi). We do the proof for i = 1.

σ(ϕ)(p1) = ∑`∈L ϕ(x`) · p1(x`)

≥ ∑`∈L h(1W`
) ·q1(x`)

= ∑ j ∑`∈L j h(1W`
) ·q1(x`)

= ∑ j ∑`∈L j h(1W`
) · r j

= ∑ j h(>`∈L j 1W`
) · r j

= ∑ j h(1U j) · r j

= h(> j r j ·1U j)

= h(p1)

> s1. �

Corollary 24. Each map UF (D(X))→ E (X), described in Example 3.(3), is onto (surjective).

Proof Since D(X) � E (X) is dense, each h ∈ E (X) is a limit of elements in D(X). Such limits
can be described for instance via nets or via ultrafilters. In the present context we choose the lat-
ter approach. Thus there is an ultrafilter F ∈ UF (D(X)) such that h is the limit of this ultrafilter
UF (σ)(F ) ∈ UF (E (X)), when mapped to E (X). The limit is expressed via the ultrafilter algebra
µ ◦ τ : UF (E (X))→ E (X). This means that (µ ◦ τ ◦UF (σ))(F ) = h. �

7 Algebras of the expectation monad

This section describes algebras of the expectation monad via barycenters of measures. It leads to an
equivalence of categories between ‘observable’ algebras and ‘observable’ convex compact Hausdorff
spaces. We shall write CCH for the category of these convex compact Hausdorff spaces, with affine
continuous maps between them.

We start with the unit interval [0,1]. It is both compact Hausdorff and convex. Hence it carries
algebras UF ([0,1])→ [0,1] and D([0,1])→ [0,1]. This interval also carries an algebra structure for the
expectation monad.

Lemma 25. The unit interval [0,1] carries an E -algebra structure:

E ([0,1])
evid // [0,1] by h � // h(id[0,1]).

More generally, for an arbitrary set A the set of (all) functions [0,1]A carries an E -algebra structure:

E ([0,1]A) // [0,1]A namely h � // λa ∈ A.h
(
λ f ∈ [0,1]A. f (a)

)
.
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Proof It is easy to see that the evaluation-at-identity map evid : E ([0,1])→ [0,1] is an algebra. We
explicitly check the details:

(
evid ◦ η

)
(x) = evid

(
η(x)

)
= η(x)(id)

= id(x)

= x

(
evid ◦ E (evid)

)
(H) = evid

(
E (evid)(H)

)
= E (evid)(H)(id)

= H(id ◦ evid)

= H
(
λk ∈ E ([0,1]).k(id)

)
= µ(H)(id)

= evid
(
µ(H)

)
=

(
evid ◦ µ

)
(H).

Since Eilenberg-Moore algebras are closed under products, there is also an E -algebra on [0,1]A. �

From Corollaries 14 and 19 we know that the underlying set X of an algebra E (X)→ X is both
compact Hausdorff and convex. Additionally, Lemma 22 says that the algebra D(X)→ X is continuous.

We first characterize algebra maps.

Lemma 26. Consider Eilenberg-Moore algebras (E (X)
α−→ X) and (E (Y )

β−→ Y ). A function f : X → Y
is an algebra homomorphism if and only if it is both continuous and affine, that is, iff the following two
diagrams commute.

UF (X)

α◦τ
��

UF ( f ) // UF (Y )
β◦τ

��

D(X)

α◦σ
��

D( f ) // D(Y )
β◦σ

��
X

f
// Y X

f
// Y

Thus, the functor Alg(E )→ CCH is full and faithful.

Proof If f is an algebra homomorphism, then f ◦ α = β ◦ E ( f ). Hence the two rectangles above
commute by naturality of τ and σ .

For the (if) part we use the property from Proposition 23 that the maps σX : D(X)� E (X) are dense
monos. This means that for each map g : D(X)→ Z into a Hausdorff space Z there is at most one
continuous h : E (X)→ Z with h ◦ σ = g. We use this property as follows.

D(X) // σ

dense
//

%%LLLLLLLLLLLLLLL
E (X)

β◦E ( f )

��

f◦α

��
Y

The triangle commutes for both maps since f is affine:

f ◦ α ◦ σ = β ◦ σ ◦D( f ) = β ◦ E ( f ) ◦ σ .

Also, both vertical maps are continuous, by Lemma 15. Hence f ◦ α = β ◦ E ( f ), so that f is an algebra
homomorphism. �
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For convex compact Hausdorff spaces X ,Y ∈ CCH one (standardly) writes A (X ,Y ) = CCH(X ,Y )
for the homset of affine continuous functions X → Y . In light of the previous result, we shall also use
this notation A (X ,Y ) when X ,Y are carriers of E -algebras, in case the algebra structure is clear from
the context.

The next result gives a better understanding of E -algebras: it shows that such algebras send measures
to barycenters (like for instance in [24]).

Proposition 27. Assume an E -algebra E (X)
α−→ X. For each (algebra) map q ∈A (X , [0,1]) the follow-

ing diagram commutes.
E (X)

α

��

evq=λh.h(q)

((RRRRRRRRRRRR

X q
// [0,1]

This says that x = α(h) ∈ X is a barycenter for h ∈ E (X), in the sense that q(x) = h(q) for all affine
continuous q : X → [0,1].

Proof Since evq = evid ◦ E (q) the above triangle can be morphed into a rectangle expressing that q is a
map of algebras:

E (X)

α

��

evq

))SSSSSSSSSSSSSS
E (q) // E ([0,1])

evid
��

X q
// [0,1]

where evid is the E -algebra on [0,1] from Lemma 25.

Now that we have a reasonable grasp of E -algebras, namely as convex compact Hausdorff spaces
with a barycentric operation, we wish to comprehend how such algebras arise. We first observe that
measures in E (X) in the images of D(X)� E (X) and UF (X)� E (X) have barycenters, if X carries
appropriate structure.

Lemma 28. Assume X is a convex compact Hausdorff space, described via D- and UF -algebra struc-
tures cv: D(X)→ X and ch: UF (X)→ X. Then:

1. cv(ϕ) ∈ X is a barycenter of σ(ϕ) ∈ E (X), for ϕ ∈D(X);

2. ch(F ) ∈ X is a barycenter of τ(F ) ∈ E (X), for F ∈UF (X).

Proof We write cv[0,1] : D([0,1])→ [0,1] and ch[0,1] : UF ([0,1])→ [0,1] for the convex and compact
Hausdorff structure on the unit interval. Then for q ∈A (X , [0,1]),

q
(
cv(ϕ)

)
= cv[0,1]

(
D(q)(ϕ)

)
since q is affine

= cv[0,1]
(

∑i riq(xi)
)

if ϕ = ∑i rixi

= ∑i ri ·q(xi)

= σ(ϕ)(q)

q
(
ch(F )

)
= ch[0,1]

(
UF (q)(F )

)
since q is continuous

= τ(F )(q). �
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We call a convex compact Hausdorff space X observable if the collection of affine continuous maps
X → [0,1] is jointly monic. This means that x = x′ holds if q(x) = q(x′) for all q ∈ A (X , [0,1]). In
a similar manner we call an E -algebra observable if its underlying convex compact Hausdorff space is
observable. This yields full subcategories CCHobs ↪→ CCH and Algobs(E ) ↪→ Alg(E ). By definition,
[0,1] is a cogenerator in these categories CCHobs and Algobs(E ).
Proposition 29. Assume X is a convex compact Hausdorff space, described via D- and UF -algebra
structures cv: D(X)→ X and ch: UF (X)→ X.

1. Via the Axiom of Choice one obtains a function α : E (X)→ X such that α(h) ∈ X is a barycenter
for h ∈ E (X); that is, q(α(h)) = h(q) for each q ∈A (X , [0,1]).

2. If X is observable, there is precisely one such α : E (X)→ X; moreover, it is an E -algebra; and
its induced convex and topological structures are the original ones on X, as expressed via the
commuting triangles:

D(X) // σ //

cv
%%LLLLLLLL

E (X)

α

��

UF (X)ooτoo

chxxqqqqqqqqq

X

This yields a functor CCHobs→ Algobs(E ).

Proof Recall from Corollary 24 that the function µ ◦ τ ◦ UF (σ) : UF (D(X))→ E (X) is surjective.
Using the Axiom of Choice we choose a section s : E (X)→ UF (D(X)) with µ ◦ τ ◦ UF (σ) ◦ s =
idE (X). We now obtain, via the choice of s, a map α : E (X)→ X in:

UF (D(X))
µ◦τ◦UF (σ)

// //

ch◦UF (cv) ++

E (X)

α=ch◦UF (cv)◦s
��

s
uu

X

We show that α(h) ∈ X is a barycenter for the measure h ∈ E (X). For each q ∈A (X , [0,1]) one has:

h(q) =
(
µ ◦ τ ◦UF (σ) ◦ s

)
(h)(q)

= µ
(
(τ ◦UF (σ) ◦ s)(h)

)
(q)

=
(
τ ◦UF (σ) ◦ s

)
(h)(evq)

=
(
ch[0,1] ◦UF (evq) ◦UF (σ) ◦ s

)
(h)

=
(
ch[0,1] ◦UF (λϕ.evq(σ(ϕ))) ◦ s

)
(h)

=
(
ch[0,1] ◦UF (λϕ.cv[0,1](D(q)(ϕ))) ◦ s

)
(h) see Remark 3.(1)

=
(
ch[0,1] ◦UF (cv[0,1] ◦D(q)) ◦ s

)
(h)

=
(
ch[0,1] ◦UF (q ◦ cv) ◦ s

)
(h) since q is affine

=
(
q ◦ ch ◦UF (cv) ◦ s

)
(h) since q is continuous

=
(
q ◦ α

)
(h)

= q(α(h)).

For the second point, assume the collection of maps q ∈ A (X , [0,1]) is jointly monic. Barycenters
are then unique, since if both x,x′ ∈ X satisfy q(x) = h(q) = q(x′) for all q ∈ A (X , [0,1]), then x = x′.
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Hence the function α : E (X)→ X picks barycenters, in a unique manner. We need to prove the algebra
equations (see the beginning of Section 2). They are obtained via the barycentric property q(α(h))= h(q)
and observability. First, the equation α ◦ η = id holds, since for each x ∈ X and q ∈A (X , [0,1]),

q
(
(α ◦ η)(x))

)
= q

(
α(η(x))

)
= η(x)(q) = q(x) = q

(
id(x)

)
.

In the same way we obtain the equation α ◦ µ = α ◦ E (α). For H ∈ E 2(X) we have:(
q ◦ α ◦ µ

)
(H) = q

(
α(µ(H))

)
= µ(H)(q)

= H
(
λk ∈ E (X).k(q)

)
= H

(
λk ∈ E (X).q(α(k))

)
= H

(
q ◦ α

)
= E (α)(H)(q)

= q
(
α(E (α)(H))

)
=

(
q ◦ α ◦ E (α)

)
(H).

We need to show that α induces the original convexity and topological structures. Since barycenters
are unique, the equations α(σ(ϕ)) = cv(ϕ) and α(τ(F )) = ch(F ) follow directly from Lemma 26.

Finally, we need to check functoriality. So assume f : X→Y is a map in CCHobs, and let α : E (X)→
X and β : E (Y )→ Y be the induced algebras obtained by picking barycenters. We need to prove β ◦
E ( f ) = f ◦ α . Of course we use that Y is observable. For h ∈ E (X), one has for all q ∈A (Y, [0,1]),

q
(
β (E ( f )(h))

)
= E ( f )(h)(q)

= h
(
q ◦ f

)
= (q ◦ f )(α(h))

= q
(

f (α(h))
)
. �

In the approach followed above barycenters are obtained via the Axiom of Choice. Alternatively,
they can be obtained via the Hahn-Banach theorem, see for instance [3, Prop. I.2.1].
Theorem 4. There is an isomorphism Algobs(E ) ∼= CCHobs between the categories of observable E -
algebras and observable convex compact Hausdorff spaces in a situation:

Algobs(E )
� _

��

∼= 11 CCHobs
qq

� _

��
Alg(E )

full & faithful
// CCH

Proof Obviously the full and faithful functor Alg(E )→CCH from Lemma 26 restricts to Algobs(E )→
CCHobs. We need to show that it is an inverse to the functor CCHobs → Algobs(E ) from Proposi-
tion 29.(2).
• Starting from an algebra α : E (X)→ X , we know by Proposition 27 that α(h) is a barycenter for

h ∈ E (X). The underlying set X is an observable convex compact Hausdorff space. This structure
gives by Proposition 29.(2) rise to an algebra α ′ : E (X)→ X such that α ′(h) is barycenter for h.
Since X is observable, barycenters are unique, and so α ′(h) = α(h).



B. Jacobs & J. Mandemaker 27

• Starting from an observable convex compact Hausdorff space X , we obtain an algebra α : E (X)→
X by Proposition 29.(2), whose induced convex and topological structure is the original one. �

Thus we have characterized observable E -algebras. The characterization of arbitrary E -algebras
remains open. Possibly the functor Alg(E )→CCH is (also) an isomorphism. For the duality in the next
section the characterization of observable algebras is sufficient.

We conclude this section with some further results on observability. We show that observable convex
compact Hausdorff spaces can be considered as part of an enveloping locally convex topological vector
space. This is the more common way of describing such structures, see e.g. [3, 4].

Lemma 30. Let X be a convex compact Hausdorff space; write A = A (X , [0,1]). If X is observable,
there is (by definition) an injection:

X // x 7→evx // [0,1]A where evx = λq ∈ A.q(x).

1. This map is both affine and continuous—where [0,1]A carries the product topology.

2. Hence if X is the carrier of an E -algebra, this map is a homomorphism of algebras—where [0,1]A

carries the E -algebra structure from Lemma 25.

Proof The second point follows from the first one via Lemma 26, so we only do point 1. Obviously,
x 7→ evx is affine. In order to see that it is also continuous, assume we have a basic open set U ⊆ [0,1]A.
The product topology says that U is of the form U = ∏q∈AUq, with Uq ⊆ [0,1] open and Uq 6= [0,1] for
only finitely many q’s, say q1, . . . ,qn. Thus:

ev−1(U) = {x | q1(x) ∈Uq1 ∧ ·· · ∧ qn(x) ∈Uqn} =
⋂

i q−1
i (Uqi).

This intersection of opens is clearly an open set of X . �

Proposition 31. Each observable convex compact Hausdorff space X ∈ CCHobs occurs as subspace of
a locally convex topological vector space, namely via:

X // // [0,1]A � � // RA

where A = A (X , [0,1]) like in the previous lemma.

Proof It is standard that the vector space RA with product topology is locally convex. We write O(X)
for the original compact Hausdorff topology on X and Oi(X) for the topology induced by the injection
X � RA. The latter contains basic opens of the form q−1

1 (U1)∩ ·· ·∩q−1
n (Un) for qi ∈ A = A (X , [0,1])

and Ui ⊆ R open. Thus Oi(X)⊆ O(X). We wish to use Lemma 2 to prove the equality Oi(X) = O(X).
Since O(X) is compact we only need to show that the induced topology Oi(X) is Hausdorff. This is easy
since X is observable: if x 6= x′ for x,x′ ∈X , then there is a q∈A (X , [0,1]) with q(x) 6= q(x′) in [0,1]⊆R.
Hence there are disjoint opens U,U ′ ⊆ R with q(x) ∈U and q(x′) ∈U ′. Thus q−1(U),q−1(U ′) ∈ Oi(X)
are disjoint (induced) opens containing x,x′. �

8 Algebras of the expectation monad and effect modules

In this section we relate algebras of the expectation monad to effect modules via a (dual) adjunction. By
suitable restriction this adjunction gives rise to an equivalence (duality) between observable E -algebras
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and Banach effect modules. Via a combination with Theorem 4 we then get our main duality result (see
Theorem 5 below).

We first return to Section 2.4. When we apply Lemma 4 to the adjunctions involving convex sets
and effect modules in Diagram (8), the (upper) comparison functor in (7) says that each effect module
M ∈ EMod gives rise to a E -algebra on the homset EMod(M, [0,1]), namely:

E
(

EMod(M, [0,1])
)

αM // EMod(M, [0,1])

h � // λy ∈M.h
(

λk ∈ EMod(M, [0,1]).k(y)
) (13)

In order to simply notation we write:

SM = EMod(M, [0,1]) for the set of “states” of M

αM(h)(y) = h(evy) where evy = λk.k(y).

Thus, Diagram (7) becomes:

EModop

S(−) ''NNNNNNNNN

S(−) // Alg(E )

(−)◦σxxqqqqqqqq

Alg(D) = Conv

��
Sets

(14)

Proposition 32. Consider for an effect module M, the E -algebra structure (13) on the homset of states
SM = EMod(M, [0,1]).

1. The induced topology is like the weak-* topology, with subbasic opens

�s(y) = {g ∈ SM | g(y)< s},

where y ∈M and s ∈ [0,1]∩Q. It thus generalizes the topology on E (X) = EMod([0,1]X , [0,1])
in Proposition 16.

2. This convex compact Hausdorff space EMod(M, [0,1]) is observable.

Hence the states functor S(−) at the top of (14) restricts to EModop→ Algobs(E ).

Proof The proof of Proposition 16 generalizes directly from an effect module of the form [0,1]X to an
arbitrary effect module M.

Next suppose f ,g ∈ SM = EMod(M, [0,1]) satisfy q( f ) = q(g) for each affine continuous q : SM →
[0,1]. This applies especially to the functions evy = λk.k(y), which are both continuous and affine.
Hence f (y) = evy( f ) = evy(g) = g(y) for each y ∈M, and thus f = g. �

We can also form a functor Alg(E )→ EModop, in the reverse direction in (14), by “homming” into
the unit interval [0,1]. Recall that this interval carries an E -algebra, identified in Lemma 25 as evaluation-
at-identity evid . For an algebra α : E (X)→ X we know that the algebra homomorphisms X → [0,1] are
precisely the affine continuous maps X → [0,1], by Lemma 26. We shall be a bit sloppy in our notation
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and write the homset Alg(E )(α,evid) = {q : X→ [0,1] | q ◦ α = evid ◦ E (q)} of algebras map in various
ways, namely as:

Alg(E )(α, [0,1]) leaving the algebra structure evid on [0,1] implicit,

Alg(E )(X , [0,1]) also leaving the algebra structure α on X implicit,

A (X , [0,1]) as set of affine continuous functions, via Lemma 26.

Proposition 33. The states functor S(−) = EMod(−, [0,1]) : EModop → Alg(E ) from (14) has a left
adjoint, also given by “homming into [0,1]”:

EModop

S(−)=EMod(−,[0,1])
,,

> Alg(E )

Alg(E )(−,[0,1])
ll

Proof Assume an E -algebra α : E (X)→ X . We should first check that the set of affine continuous func-
tions is a sub-effect module: Alg(E )(α, [0,1]) = A (X , [0,1]) ↪→ [0,1]X . The top and bottom elements
1 = λy.1 and 0 = λy.0 are clearly in A (X , [0,1]). Also, A (X , [0,1]) is closed under (partial) sums >
and scalar multiplication with r ∈ [0,1]. Next, if we have a map of algebras g : X → Y , from E (X)

α→ X
to E (Y )

β→ Y . Then we get a map of effect modules g∗ = (−) ◦ g : A (X , [0,1])→A (Y, [0,1]). This is
easy because g is itself affine and continuous, by Lemma 26.

We come to the adjunction Alg(E )(−, [0,1]) a EMod(−, [0,1]). For M ∈ EMod and (E (X)
α→ X) ∈

Alg(E ) there is a bijective correspondence:

E (X)

α
��

E ( f ) // E (SM)

αM��
X

f // SM
====================
M g

// Alg(E )(α, [0,1]) = A (X , [0,1]

We proceed as follows.

• Given an algebra map f : X→ SM = EMod(M, [0,1]) as indicated, define f : M→A (X , [0,1]) by
f (y)(x) = f (x)(y). We leave it to the reader to check that f is a map of effect modules, but we do
verify that f (y) is an algebra map X → [0,1]; so for h ∈ E (X),(

evid ◦ E ( f (y))
)
(h) = E ( f (y))(h)(id)

= h(id ◦ f (y))

= h( f (y))

= h
(
λx. f (x)(y)

)
= h

(
(λk.k(y)) ◦ f

)
= E ( f )(h)

(
λk.k(y)

)
= αM

(
E ( f )(h)

)
(y)

= f
(
α(h)

)
(y) since f is an algebra map

=
(

f (y) ◦ α
)
(h).
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• Now assume we have a map of effect modules g : M → Alg(E )(α, [0,1]) = A (X , [0,1]). We
turn it into a map of algebras g : X → SM, again by twisting arguments: g(x)(y) = g(y)(x). Via
calculations as above one checks that g is a map of algebras.

Clearly f = f and g = g. �

Let’s write the unit and counit of this adjunction as ηa and εa, in order make a distinction with the
unit η of the monad E , see below. The unit and counit are maps:

X
ηa // EMod

(
Alg(E )(α, [0,1]), [0,1]

)
in Alg(E )

Alg(E )
(

EMod(M, [0,1]), [0,1]
)

εa
// M in EModop

both given by point evaluation:

ηa(x) = λ f ∈A (X , [0,1]). f (x) εa(y) = λg ∈ EMod(M, [0,1]).g(y) (15)

The unit of this adjunction is related to the unit of the monad E , written explicitly as ηE in the following
way.

EMod
(
A (X , [0,1]), [0,1]

)
X

ηa 11ccccccccccc

ηE --[[[[[[[[[[[[[[[[[[[[[

E (X) = EMod
(
[0,1]X , [0,1]

)OO

Lemma 34. Consider the unit ηa in (15) of the adjunction from Proposition 33, at an algebra E (X)
α→ X.

1. This unit is injective if and only if X is observable.

2. In fact, it is an isomorphism if and only if X is observable.

Hence the adjunction Alg(E ) � EModop from Proposition 33 restricts to a coreflection Algobs(E ) �
EModop.

Proof The first statement holds by definition of ‘observable’. So for the second statement it suffices
to assume that X is observable and show that ηa : X � EMod

(
A (X , [0,1]), [0,1]

)
is surjective. This

unit is by construction affine and continuous. Hence its image in the space EMod
(
A (X , [0,1]), [0,1]

)
is

compact, and thus closed.
We are done if ηa is dense. Thus we assume a non-empty open set U ⊆ EMod

(
A (X , [0,1]), [0,1]

)
and need to prove that there is an y ∈ X with ηa(y) ∈ U . By Proposition 32 we may assume U =
�s1(q1)∩ ·· · ∩�sn(qn), for qi ∈ A (X , [0,1]) and si ∈ [0,1]∩Q. Thus we may assume a map of effect
modules h : A (X , [0,1])→ [0,1] inhabiting all these �’s. Hence h(qi)< si.

Since ι : A (X , [0,1]) ↪→ [0,1]X is a sub-effect module, by extension, see Proposition 11, we get a
map of effect modules h′ : [0,1]X → [0,1] with h′ ◦ ι = h. Thus, we can take the inverse image of the
open set U along the continuous map:

E (X) = EMod
(
[0,1]X , [0,1]

) (−)◦ι // EMod
(
A (X , [0,1]), [0,1]

)
The resulting open set is:

V def
=

(
(−) ◦ ι

)−1
(U) = {k ∈ E (X) | k ◦ ι ∈U}

= {k ∈ E (X) | ∀i.k(ι(qi))< si}.
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This subset V ⊆ E (X) contains h′ and is thus non-empty. Since σ : D(X)� E (X) is dense, by Proposi-
tion 23, there is a distribution ϕ = (∑ j r jx j) ∈D(X) with σ(ϕ) ∈V . We take x = ∑ j r jx j ∈ X to be the
interpretation of ϕ in X , using that X is convex. We claim ηa(x) ∈U . Indeed, ηa(x) ∈�s(qi), for each
i, since:

ηa(x)(qi) = qi(x) = qi(∑ j r jx j)

= ∑ j r j ·qi(x j) since qi : X → [0,1] is affine

= σ(ϕ)(ι(qi))

< si since σ(ϕ) ∈V . �

We turn to the counit (15) of the adjunction in Proposition 33.

Lemma 35. For an effect module M consider the counit εa : M→A (SM, [0,1]), where SM =EMod(M, [0,1])
is the convex compact Hausdorff space of states.

1. The effect module A (SM, [0,1]) is “Banach”, i.e. complete.

2. The counit map εa is a dense embedding of M into this Banach effect module A (SM, [0,1]).

3. Hence it is an isomorphism if and only if M is a Banach effect module.

Proof Completeness of A (SM, [0,1]) is inherited from [0,1], since its norm is the supremum norm, like
in Example 3.

For the second point we use the corresponding result for order unit spaces, via the equivalence
T̂o : AEMod '−→OUS from Proposition 6. If (V,u) is an order unit space then it is well known (see [4])
that the evaluation map θ : V →A (S,R) is a dense embedding. Here S = OUS(V,R) is the state space
of V . However if we take V to be the totalization T̂o(M) of M, then θ is precisely T̂o(εa), since:

T̂o(M) =V //
dense

θ // A (S,R) = A
(
OUS(V,R),R

)
∼= A

(
EMod(M, [0,1]),R

)
∼= T̂o

(
A
(
EMod(M, [0,1]

)
, [0,1])

)
.

and both θ and T̂o(εa) are the evaluation map.
For the third point, one direction is easy: if the counit is an isomorphism, then M is isomorphic to

the complete effect module A
(
SM, [0,1]), and thus complete itself. In the other direction, denseness

of M � A
(
SM, [0,1]) means that each h ∈ A

(
SM, [0,1]) can be expressed as limit h = limn εa(xn) of

elements xn ∈M. But if M is complete, there is already a limit x = limn xn ∈M. Hence εa(x) = h, making
εa an isomorphism. �

Combining lemmas 35 and 34 gives us the main result of this paper.

Theorem 5. The adjunction Alg(E )� EModop from Proposition 33 restricts to a duality Algobs(E )'
BEModop between observable E -algebras and Banach effect modules. In combination with Theorem 4
we obtain:

CCHobs ∼= Algobs(E ) ' BEModop. �

This result can be seen as a probabilistic version of fundamental results of Manes (Theorem 1) and
Gelfand (Theorem 2).
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9 A new formulation of Gleason’s theorem

Gleason’s theorem in quantum mechanics says that every state on a Hilbert space of dimension three or
greater corresponds to a density matrix [17]. In this section we introduce a reformulation of Gleason’s
theorem, and prove the equivalence via Banach effect modules (esp. Lemma 35). This reformulation
says that effects are the free effect module on projections. In formulas: Ef(H ) ∼= [0,1]⊗Pr(H ), for a
Hilbert space H .

Gleason’s theorem is not easy to prove (see e.g. [14]). Even proofs using elementary methods are
quite involved [12]. A state on a Hilbert space H is a certain probability distribution on the projections
Pr(H ) of H . These projections Pr(H ) form an orthomodular lattice, and thus an effect algebra [15,
21]. In our current context these are exactly the effect algebra maps Pr(H )→ [0,1]. So Gleason’s
(original) theorem states:

EA
(
Pr(H ), [0,1]

) ∼= DM(H ). (16)

This isomorphism, from right to left, sends a density matrix M to the map p 7→ tr(Mp)—where tr is the
trace map acting on operators.

Recall that Ef(H ) is the set of positive operators on H below the identity. It is a Banach effect
module. One can also consider the effect module maps Ef(H )→ [0,1]. For these maps there is a
“lightweight” version of Gleason’s theorem:

EMod
(
Ef(H ), [0,1]

) ∼= DM(H ). (17)

This isomorphism involves the same trace computation as (16). This statement is significantly easier to
prove than Gleason’s theorem itself, see [11].

Because Gleason’s original theorem (16) is so much harder to prove than the lightweight version (17)
one could wonder what Gleason’s theorem states that Gleason light doesn’t. In Theorem 6 we will show
that the difference amounts exactly to the statement:

[0,1]⊗Pr(H ) ∼= Ef(H ), (18)

where ⊗ is the tensor of effect algebras (see [21]). A general result, see [29, VII,§4], says that the tensor
product [0,1]⊗Pr(H ) is the free effect module on Pr(H ).

The following table gives an overview of the various formulations of Gleason’s theorem.

Description Formulation Label

original Gleason,
for projections

EA
(
Pr(H ), [0,1]

)∼= DM(H ) (16)

lightweight version,
for effects

EMod
(
Ef(H ), [0,1]

)∼= DM(H ) (17)

effects as free
module on projections

[0,1]⊗Pr(H )∼= Ef(H ) (18)

In this section we shall prove (16)⇐⇒ (18), in presence of (17), see Theorem 6. Since (16) is true, for
dimension ≥ 3, the same then holds for (18).

We first prove a general result based on the duality from the previous section. There we used the
shorthand SM for the algebra of states EMod(M, [0,1]). We now extend this notation to effect algebras
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and write SD = EA(D, [0,1]), where D is an effect algebra. We recall from Section 3 that SD is a convex
set. We will topologize it via the weakest topology that makes all point evaluations continuous.

Since the tensor product [0,1]⊗D of effect algebras is the free effect module on D it follows that
there is an isomorphism:

EA
(
D, [0,1]

)
∼=
(̂−) // EMod

(
[0,1]⊗D, [0,1]

)
with f̂ (s ⊗ x) = s · f (x)

SD S[0,1]⊗D

(19)

Lemma 36. The mapping (̂−) : SD
∼=−→ S[0,1]⊗D in (19) is an affine homeomorphism.

Proof We only show that (̂−) is a homeomorphism. For an arbitrary element >i ri ⊗ xi ∈ [0,1]⊗D we
have in [0,1],

f̂
(
>i ri ⊗ xi

)
= ∑i ri · f (xi).

Since the maps f 7→ f (xi) are continuous by definition of the topology on SD, and since addition and mul-
tiplication on [0,1] are continuous, it follows that f 7→ f̂

(
>i ri ⊗ xi

)
is continuous. Hence by definition

of the topology on S[0,1]⊗D we see that the mapping (̂−) is continuous.
Similarly, the inverse, say written as (̃−) : S[0,1]⊗D→ SD, is continuous. It is given by k̃(x) = k(1 ⊗ x).

Continuity again follows from the definition of the topology on S[0,1]⊗D. �

Lemma 37. Suppose f : D→ E is an effect algebra map between an effect algebra D and a Banach
effect module E such that the following hold.

• The induced map f̂ : [0,1]⊗D→ E is surjective—obtained like in (19) as f̂ (s ⊗ x) = s • f (x).

• The “precompose with f ” map − ◦ f : SE → SD is a homeomorphism.

The map f̂ is then an isomorphism between [0,1]⊗D and E.

Proof Using Lemma 35, there are for the Banach effect module E and for the (free) effect module
[0,1]⊗D, maps εE and φD in:

E
εE
∼=

// A
(
SE , [0,1]

) [0,1]⊗D //
ε[0,1]⊗D

dense
//

φD ,,

A
(
S[0,1]⊗D, [0,1]

)
∼= h7→h((̂−))

��
A
(
SD, [0,1]

)
The operation (̂−) on the right is as in (19). We claim that the following diagram commutes.

[0,1]⊗D //
dense

φD //

f̂
����

A
(
SD, [0,1]

)
∼= k 7→k(−◦ f )

��
E

εE

∼= // A
(
SE , [0,1]

)
If this is indeed true the map f̂ is an embedding followed by two isomorphism and therefore injective
(and thus an isomorphism). To prove the claim, we assume >i ri ⊗ xi ∈ [0,1]⊗D and g∈ SE and compute
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first the east-south direction:(
(λk.k(− ◦ f )) ◦ φD

)(
>i ri ⊗ xi

)
(g) = φD

(
>i ri ⊗ xi

)
(g ◦ f )

= ε[0,1]⊗D
(
>i ri ⊗ xi

)(
(̂g ◦ f )

)
= (̂g ◦ f )

(
>i ri ⊗ xi

)
= ∑i ri ·g( f (xi))

= g
(
>i ri • f (xi)

)
since g is affine

= g
(

f̂
(
>i ri ⊗ xi

))
= εE

(
f̂
(
>i ri ⊗ xi

))
(g)

=
(
εE ◦ f̂

)(
>i ri ⊗ xi

)
(g). �

As a consequence we obtain the isomorphism (18). We will show next that it is equivalent to Glea-
son’s (original) theorem.

Theorem 6. (16)⇐⇒ (18), in presence of (17).
That is, using Gleason light (17) the following statements are equivalent.

(16): EA(Pr(H ), [0,1])∼= DM(H ), i.e. Gleason’s original theorem;

(18): The canonical map [0,1]⊗Pr(H )→ Ef(H ) is an isomorphism.

Proof Assuming [0,1]⊗Pr(H )
∼=−→ Ef(H ) we get Gleason’s theorem:

EA
(
Pr(H ), [0,1]

) ∼= EMod
(
[0,1]⊗Pr(H ), [0,1]

)
by freeness

∼= EMod
(
Ef(H ), [0,1]

)
by assumption

∼= DM(H ) by Gleason light (17).

In the other direction assume SPr(H ) =EA(Pr(H ), [0,1])∼=DM(H ). We apply the previous lemma
to the inclusion f : Pr(H ) ↪→ Ef(H ). Then indeed:

• the induced map f̂ : [0,1]⊗Pr(H )→ Ef(H) is surjective: each effect A ∈ Ef(H ) can be written
as convex combination of projections A = ∑i riPi, via the spectral theorem.

• the precomposition − ◦ f : SEf(H )→ SPr(H ) is an isomorphism since:

SEf(H )

(17)∼= DM(H )
(16)∼= SPr(H ).

Since both these isomorphisms involve the same trace computation, this isomorphism is in fact the
map induced by the inclusion f : Pr(H ) ↪→ Ef(H ).

Thus the conditions of Lemma 37 are met and so [0,1]⊗Pr(H )∼= Ef(H ). �

10 The expectation monad for program semantics

This paper uses the expectation monad E (X) = EMod([0,1]X , [0,1]) in characterization and duality re-
sults for convex compact Hausdorff spaces. Elements of E (X) are characterized as (finitely additive)
measures (see esp. Theorem 3). The way the monad E is defined, via the adjunction Sets � EModop, is
new. This approach deals effectively with the rather subtle preservation properties for maps h ∈ E (X) =
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EMod([0,1]X , [0,1]), namely preservation of the structure of effect modules (with non-expansiveness,
and thus continuity, as consequence, see Lemma 7).

Measures have been captured via monads before, first by Giry [16] following ideas of Lawvere. Such
a description in terms of monads is useful to provide semantics for probabilistic programs [26, 23, 30, 31].
The term ‘expectation monad’ seems to occur first in [33], where it is formalized in Haskell. Such a
formalization in a functional language is only partial, because the relevant equations and restrictions
are omitted, so that there is not really a difference with the continuation monad X 7→ [0,1]([0,1]

X ). A
formalization of what is also called ‘expectation monad’ in the theorem prover Coq occurs in [5] and is
more informative. It involves maps h : [0,1]X → [0,1] which are required to be monotone, continuous,
linear (preserving partial sum > and scalar multiplication) and compatible with inverses—meaning h(1−
p)≤ 1−h(p). This comes very close to the notion of homomorphism of effect module that is used here,
but effect modules themselves are not mentioned in [5]. This Coq formalization is used for instance in
the semantics of game-based programs for the certification of cryptographic proofs in [9] (see [35] for
an overview of this line of work). Finally, in [25] a monad is used of maps h : [0,1]X → [0,1] that are
(Scott) continuous and sublinear—i.e. h(p>q)≤ h(p)>h(q), and h(r · p) = r ·h(p).

The definition E (X) = EMod([0,1]X , [0,1]) of the expectation monad that is used here has good
credentials to be the right definition, because:

• The monad E arises in a systematic (not ad hoc) manner, namely via the composable adjunc-
tions (8).

• The sets E (X) as defined here form a stable collection, in the sense that its elements can be char-
acterized in several other ways, namely as finitely additive measures (Theorem 3) or as maps of
partially ordered vector spaces with strong unit (via Proposition 5, see Remark 2 (3)).

• Its (observable) algebras correspond to well-behaved mathematical structures (convex compact
Hausdorff spaces), via the isomorphism Algobs(E )∼= CCHobs in Theorem 4.

• There is a dual equivalence Algobs(E ) ' BEModop that can be exploited for program logics,
see [13].

It is thus worthwhile to systematically develop a program semantics and logic based on the expec-
tation monad and its duality. This is a project on its own. We conclude by sketching some ingredients,
focusing on the program constructs that can be used.

First we include a small example. Suppose we have a set of states S = {a,b,c} with probabilistic
transitions between them as described on the left below.

a
1
2

}}zzzzzzz 1
2

!!CCCCCCC

b 2
3

//
1
3

<< c
1

bb

S // D(S)

a � // 1
2 b+ 1

2 c

b � // 1
3 b+ 2

3 c
c � // 1c

On the right is the same system described as a function, namely as coalgebra of the distribution monad
D . It maps each state to the corresponding discrete probability distribution. We can also describe the
same system as coalgebra S→ E (S) of the expectation monad, via the map D � E . Then it looks as
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follows:
S // E (S)

a � // λq ∈ [0,1]S. 1
2 q(b)+ 1

2 q(c)

b � // λq ∈ [0,1]S. 1
3 q(b)+ 2

3 q(c)

c � // λq ∈ [0,1]S.q(c)

Thus, via the E -monad we obtain a probabilistic continuation style semantics.
Let’s consider this from a more general perspective. Assume we now have an arbitrary, unspecified

set of states S, for which we consider programs as functions S→ E (S), i.e. as Kleisli endomaps or as E -
coalgebras. In a standard way the monad structure provides a monoid structure on these maps S→ E (S)
for sequential composition, with the unit S→ E (S) as neutral element ‘skip’. We briefly sketch some
other algebraic structure on such programs (coalgebras), see also [31].

Programs S→ E (S) are closed under convex combinations: if we have programs P1, . . . ,Pn : S→
E (S) and probabilities ri ∈ [0,1] with ∑i ri = 1, then we can form a new program P = ∑i riPi : S→ E (S).
For q ∈ [0,1]S,

P(s)(q) = ∑i ri ·Pi(s)(q).

Since the sets S→ E (S) carries a pointwise order with suprema of ω-chains we can also give meaning
to iteration constructs like ‘while’ and ’for . . . do’.

Further we can also do “probabilistic assignment”, written for instance as n := ϕ , where n is a
variable, say of integer type int, and ϕ is a distribution of type D(int). The intended meaning of such
an assignment n := ϕ is that afterwards the variable n has value m : int with probability ϕ(m) ∈ [0,1].
In order to model this we assume an update function updn : S× int→ S, which we leave unspecified
(similar functions exist for other variables). The interpretation [[n := ϕ ]] of the probabilistic assignment
is a function S→ E (S), defined as follows.

[[n := ϕ ]](s) = E
(
updn(s,−)

)(
σ(ϕ)

)
= λq ∈ [0,1]S. ∑i ri ·q(updn(mi)), if ϕ = ∑i rimi.

It applies the functor E to the function updn(s,−) : int→ S and uses the natural transformation σ : D ⇒
E from (6).
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