Reliability of a read-write lock implementation

Bachelor thesis computer science

Bernard van Gastel
Supervised by Sjaak Smetsers en Marko van Eekelen
Radboud University, Nijmegen

B.vanGastel@student.science.ru.nl

February 7, 2008

Abstract

It is wiser to find out than to suppose.

— Samuel L. Clemens, known as Mark Twain [5]

Read-write locking is an important mechanism to speed up concurrent access to certain
resources within the same program. The correctness of the implementation is important: for
example no deadlock should occur and certain properties, like exclusivity for writers, must
be guaranteed. To assert the reliability of a read-write lock implementation, it is modelled
and checked in UPPAAL. After adjustments to the implementation no bugs were found.

Contents

2.2 Properties|
2.3 Implementation|

[3 Modelling in UPPAAT]

[3.2 Modelling Technique|
3.3 Modelling the Read-Write Lock]|
[3.4 Checking the Read-Write Lock]

4 Other implementations|

6 Future Work
(6 Conclusionl

|Bibliography|

A Fmal Version —C Codd
[B_PVS model

© = ot O

14
14
14
15
19

21

23

24

25

26

30

Chapter 1

Introduction

Program testing can be a very effective way to show the presence of bugs, but is
hopelessly inadequate for showing their absence.

— Edsger Dijkstra [2]

Reliability of software is important. There are several methods to assert the reliability of
software modules. A strong method means a greater degree of certainty of the reliability of
the module. There are mainly three methods: testing, model checking and formal proof. To
start, extensive testing of a module can give an idea of its reliability. Notwithstanding such
testing, the above Dijkstra quote remains highly illustrative. Stated differently: if you do not
find any bugs with testing, it is possible the tests were not extensive enough (thus there is
still a possibility the program contains bugs). Testing is not a strong method, yet, because
of the inherent costs of stronger methods, it is the method most widely used.

The second and a stronger method is model checking (for example, with the tool UP-
PAAL). To use this method, the software module must first be modeled, and thereafter
certain properties can be checked in each possible state of the model. Such a model is an
abstraction of details and includes only the essential parts of the module and is therefore less
complex. Hence the model can only have less states then the original implementation. A
level of abstraction should be reached so the model can have only a limited number of states
hence all states can be checked in finite time. Otherwise extra limitations on the number of
states must be imposed (but well chosen not to affect the essential part) because otherwise
the model is uncheckable.

The third method, formal proofing, is used if there are many variables in the model (and
hence the model bigger) and an explosion of states occurs (there a many possible states).
With each added variable the number of states grows exponentially, possibly leading to a
model not checkable in a limited period of time or leading to an infinite model which is per
definition not checkable. By using formal proof techniques, the third technique, and optionally
a proof assistant (e.g., PVS), it is possible to prove certain properties not deducible with model
checking. Formal proof of correctness is the strongest method available to assert the reliability
of software, however it is also the most expensive.

It is essential for both model checking and formal proof methods to make an abstract
model. If there is no model or a too detailed model, it is hard to proof anything aside from
trivial properties, since too much time is lost checking or proofing details not relevant for the
properties of the software to be proved. Also the model must be sound: every property of the
model must be a property of the implementation.

The code in this paper originates from the self-written open-source library PIToolkit. The
library is written in Objective-C, an almost minimal superset of C to support object oriented
programming. The Objective-C language does not have any own locking mechanism (although
different Objective-C libraries all have their own, incompatible of each other, mechanisms).
All multithreaded code is dependant on the POSIX multithread API’s and all code is being
used in 24/7 applications. Until writing this article, no errors in the read-write locking
code where found during testing or running applications using the code. For readability, all
Objective-C code is converted to plain C and appended to this thesis in appendix [A]

First read-write locks, its properties and its implementation are described. In the next
section the implementation is modelled and certain properties (mentioned in section [2)) are
checked with the model checker UPPAAL. Other implementations are looked into in the
section thereafter.

Chapter 2

Read-Write Lock

One has attained to mastery when one neither goes wrong nor hesitates in the
performance.

— Nietzsche [6]

2.1 Introduction

Read-write locks are an important mechanism for correct and fast execution of concurrency.
Inside a computer multiple applications (called processes) work simultaneously. These pro-
cesses are isolated from each other with respect to resources (e.g., memory or file). In the
event a fault occurs within a process, it is isolated within this process (the notable exception
being interdependent processes). Furthermore, in terms of executing speed or developer hours
it can be efficient to execute multiple threads within a single process, the trade-off however is
no isolation between threads. When two threads are working on the same resource within the
same process, errors can occur [7], resulting in a crash of the program or worse in corrupted
files (this also applies to interdependent processes).

Normally, a lock (also called a mutex) is used to ensure that only one thread will access
a certain set of resources at a given time. A lock has two operations: lock and unlock. The
lock operation is done before the critical section and the unlock operation after the critical
section. The most basic lock can only be locked one time by a given thread (non-reentrant)
and can be implemented with a boolean and an atomic test-set operation (only if a variable
has a certain value replace it with a different value, all atomically, see section 5.2 of [§] for
more information). In figure a standard lock implementation is listed. Extensions are for
example reentrancy and condition locking. Reentrancy allows nested lock operations by the
same thread. Condition locking is a special kind of lock where a thread waits (stalls) until a
certain condition is satisfied and automatically continues when notified (a ‘notify’ operation
needs to be executed when the condition changes). An example usage is listed in The
examined read write lock uses a condition lock. Condition locks are extensively described in
section 5.4 of [8].

A read-write lock functions differently from a normal lock: it either allows multiple threads
to access the resource in a read-only way, or it allows one, and only one, thread at any given
time to have full access (both read and write) to the resource [7, [§]. It is fundamentally
different from both a normal mutex (since it allows multiple threads to obtain a read lock)

// lock = 0 —> wunlocked
// lock =1 —> locked
// testset (...) test for 0 and if 0 sets the wvariable to 1.
// testset (...) returns true if the test for 0 succeeded, otherwise false
void lock (int *lock) {
while (!testset (lock));
}

void unlock (int *lock) {
xlock = 0;
}

Figure 2.1: Standard lock solution adapted from section 5.2 of [§].

ConditionLock x*1;
Item items[16];
int count = 0;
void push(Item item) {
lock (1);
while (count = 16)
wait (1);
items [count++] = item;
if (count = 1) {
unlockWithSignalAll(1);
1 else
unlock (1);

}

Item pop () {

lock (1);

while (count = 0)
wait (1);

Item retval = items[——count];

if (count = 15) {
unlockWithSignalAll(1);

1 else {
unlock (1);

}

return retval;

Figure 2.2: Condition lock example adapted from section 5.4 of [§].

Lock x*read;

Lock *xwrite;

int readCount = 0;

void readLock () {
lock (read);
readCount++;
if (readCount = 1)

lock (write);

unlock (read);

void readUnlock () {
lock (read);
readCount ——;
if (readCount = 0)
unlock (write);
unlock (read);

}

void writeLock () {
lock (write);
}

void writeUnlock () {
unlock (write);
}

Figure 2.3: Standard read write lock solution, adapted from [7].

and the standard producer/consumer problem (both the consumer and producer need to
write access) [8]. By using this kind of thread the program can be faster by allowing more
concurrency. A standard implementation is stated in figure (adapted from [7]). The
standard approach has certain limitations (like non-reentrancy) the examined read-write lock
has not.

2.2 Properties
The properties of the examined read write lock are described below.

Reentrant. A thread may call one of the lock methods multiple times, even when the thread
has not fully unlocked the lock. A thread may only call one of the methods multiple
times (not interleaved) until the lock is fully unlocked. This property is important for
modulair programming. A function obtaining a lock can use other functions which also
obtain the same lock. Figure [2.4] contains an example of this usage.

A read lock can be obtained after a write lock is already obtained by the same thread.
When a write lock is obtained, this lock is also regarded as a read lock. Following this
property a thread holding a write lock can execute reentrant (see previous property)
read locks on the lock. The following sequence of lock operations is valid: write lock,
read lock, unlock, unlock. This property is also important for modulair program-
ming. It is possible to use functions requiring a read lock in a method which uses a

int determinant (Matrix xa) {
readLock (a);
// ... calculate Determinant
unlock (a);
return determinant;

}

// gives back the inverted matrix
Matrix sinvertMatrix (Matrix *a) {

readLock(a);
int i = determinant (a);
// ... really inverse matrix

unlock (a);
return inverseMatrix;

Figure 2.4: Example of the use of a reentrant lock.

write lock. The sequence of first a read lock and secondly a write lock (called upgradable
read locks) is not possible because the chance of a deadlock situation is large (e.g. two
threads with the same sequence). Figure contains an example of the use of read
locking a lock already write locked earlier.

Write locks have priority over read locks. There should be no situation where a certain
thread cannot get a lock because of scheduling order. Each thread should make near
constant progress and never stall. Read-write locks have two kinds of starvation, one
with each kind of lock operation. Write lock priority results in the possibility of reader
starvation: when constantly there is a thread waiting to acquire a write lock, threads
waiting for a read lock on the same lock will never progress and visa versa. Most
implementations give priority to write locks over read locks. This is mostly because
write locks are more important, smaller, exclusive and occurs less. In the literature,
this property is known as ‘the second readers writers problem’ [7].

The properties below are fundamental to the correct working of all read-write locks, not
just the implementation used in this paper. These properties will be used in later sections to
assert the reliability.

Exclusive access for threads with a write lock. It is important to only grant one and
only one thread full access (by means of a write lock) and disallow any access from other
threads. This is the same property as stating that while a thread has obtained a read
lock no other thread may have obtained a write lock.

Deadlock free. No correct sequence of read locks, write locks and unlocks may result in
a state where the program stalls, called a deadlock. Since it is possible to combine
several locks and correct sequences of lock operations (obtaining a read or write lock, or
releasing a lock), without resorting to complex synchronization , resulting in a program
which can deadlock dependant on the scheduling order of the threads. An example of
this is shown in figure 2.6 Even through this is not the scope of this thesis, solutions for

int determinant (Matrix xa) {
readLock (a);
// ... calculate Determinant
unlock (a);
return determinant;

}

// inverts the matriz in place
void invertMatrix (Matrix *a) {
writeLock (a);
int i = determinant (a);
// ... really inverse matrix
unlock (a);

Figure 2.5: Example of the use of a write lock being treated as a read lock.

this problem are available [7, [§]. Restricting the deadlock free property to the scope of
this thesis, no deadlock may occur originating from the implementation of the read-write
lock while executing correct sequences of lock operations.

2.3 Implementation

The examined read write lock has certain attributes/variables. The code of the implemen-
tation is listed in figure The lock implementation is based on a condition lock, so the
first attribute is a condition lock. It has a global lock count lockCount which count the
number of locks (including reentrant locks) obtained from this lock. Also it tracks, by means
of the writeLockedBy variable, if and which thread has the write lock. A write lock can
only be obtained when the global lock count is zero (lockCount == 0) or the thread already
has obtained a write lock (a reentrant write lock request, writeLockedBy == current thread
identifier). While a write lock request is pending (recorded in the variable writersWaiting),
no read lock may be obtained because of the property to prioritize write requests. Also a read
lock can only be obtained when no write lock is obtained from the lock. When requesting
a read or write lock and one of the conditions obtaining is not met, the thread waits until
the condition is satisfied. This is done by using the condition lock. During the course of this
thesis an error in the implementation was found with help of the UPPAAL tool (see chapter
and the implementation is adjusted to correct the error. When a reentrant read lock is
requested (by a thread already holding a read lock) while a write lock is pending a deadlock
occurs. The read lock request cannot succeed because a write lock request is pending and the
write lock request cannot succeed because the other thread still has a read lock. Example
code for this deadlock is listed in figure [2.8] The solution is to let a reentrant read lock to
be obtained always but a new read lock to be obtained only when no writers are waiting nor
any thread has a write lock. Therefore the read write lock needs to maintain per thread state
information. The implementation is adjusted accordingly.

The new version keeps track of the reentrant lock count (and the corresponding thread
identifier) for each thread which obtained a lock. Therefore the new implementation is more

Lock *lockOne;
Lock xlockTwo;
void threadOne () {
lock (lockOne);
sleep (10);
lock (lockTwo);
unlock (lockTwo);
unlock (lockOne);

}

void threadTwo () {
lock (lockTwo);
sleep (10);
lock (lockOne);
unlock (lockOne);
unlock (lockTwo) ;

Figure 2.6: Example of a deadlock caused by multiple locks obtained in the wrong order.

complex. A write lock can only be obtained when if no locks have been obtained and thus
the per thread information list is empty. A seperate lockCount is not needed and eliminated.
Just like the old version the code tracks which thread has a write lock if obtained, so no
read nor write locks by other threads can be obtained when this variable is set. To adhere to
the property to prioritize write lock requests, just as in the old version, a counter with the
number of waiting threads for a write lock is kept so no read lock can be obtained when the
counter is above zero (unless it is a reentrant read lock). The simplified code (for just one
lock) is listed in figure while the total code is listed in appendix

10

ConditionLock x1;

int lockCount = 0;

ThreadID writeLockedBy = NONE;
int writersWaiting = 0;

void readLock () {
lock (1);
while (writersWaiting > 0 ||
(writeLockedBy != NONE && writeLockedBy != currentThreadlID))
wait (1);
lockCount-++;
unlock (1);

void writeLock () {
lock (1);
writersWaiting++;
while (lockCount > 0 && writeLockedBy != currentThreadID)
wait (1);
writersWaiting ——;
writeLockedBy = currentThreadID;
lockCount++;
unlock (1);
}

void unlock () {

lock (1);

lockCount ——;

if (lockCount = 0) {
writeLockedBy = NONE;
unlockWithSignalAll(1);

} else
unlock (1);

Figure 2.7: Simplified code (for one lock) of the faulty implementation.

11

void threadOne () {
readLock ();
sleep (20);
readLock ();
// mever reached due deadlock

}
void threadTwo () {

sleep (10);

writeLock ();

// mever reached due deadlock
}

Figure 2.8: Code resulting in a deadlock when using the original version of the lock (using
the simplified syntax of figure

12

struct ThreadInfo {
ThreadID id;
unsigned int count;
struct ThreadInfo s*next;

}s

ConditionLock *1 = ...;

struct ThreadInfo xthreads = NULL;

int writersWaiting = 0;

ThreadID writeLockedBy = NONE;

void newLock(ThreadID id, struct ThreadInfo s+threadsPtr) {

struct ThreadInfo #*new = malloc(sizeof(struct ThreadInfo));
new—>id = id;
new—>count = 1;
new—>next = xthreadsPtr;
*threadsPtr = new;
}
int incLock (ThreadID id, struct ThreadInfo xthread) {
if (thread = NULL) return —1;
if (thread—id = id) return ++thread—>count;

return incLock(id, thread—next);

}
int decLock(ThreadID id, struct ThreadInfo #xthreadPtr) {
struct ThreadInfo *xcurrent = xthreadPtr;
if (current = NULL) return —1;
if (current—>id = id) {
if (current—>count > 1) return ——current—>count;
*threadPtr = current—>next;
free (current);
return 0;

}

return decLock(id, ¤t—>next);

}
void readLock () {
lock (1);
// try to increase the reentrant lock count
int retval = incLock(currentThreadID, threads);
if (retval = —-1) {
// new thread (thread has not locked this lock)
while (writeLockedBy != NONE || writersWaiting > 0)
wait (1);
newLock (currentThreadID , &threads);

unlock (1);
}
void writeLock () {
lock (1);
if (writeLockedBy = currentThreadID) {
incLock (currentThreadID , threads);
} else {
writersWaiting++;
while (threads != NULL)
// there are other threads holding the lock, wait
wait (1);
writersWaiting ——;
newLock (currentThreadID , &threads);
writeLockedBy = currentThreadID;

}
unlock (1);

void unlock () {
lock(1);
unsigned int count = decLock(currentThreadID , &threads);
if (count = 0) {
writeLockedBy = NONE;
unlockWithSignallAll(1);
} else
unlock (1);

13

Figure 2.9: Simplified code (for one lock) of the correct implementation.

Chapter 3

Modelling in UPPAAL

Debugging is twice as hard as writing the code in the first place. Therefore, if you
write the code as cleverly as possible, you are, by definition, not smart enough to
debug it.

— Brian W. Kernighan

3.1 UPPAAL

Uppaal is an integrated tool environment for modeling, validation and verification
of real-time systems modeled as networks of timed automata, extended with data
types (bounded integers, arrays, etc.).

The tool is developed in collaboration between the Department of Information
Technology at Uppsala University, Sweden and the Department of Computer Sci-
ence at Aalborg University in Denmark.

The above quote is from the UPPAAL website. UPPAAL is a tool written in Java to
check models for certain properties. The model can be created in the GUI of UPPAAL, the
properties are lines of text. A model is a final state automata. It consists of states, transitions
and variables. A final state automata in UPPAAL is called a process. Multiple processes can
be combined in UPPAAL into one UPPAAL file. The transitions can have conditions (called
guards) if the transition can occur. Also they can alter the variables. A transition can be
synchronized with another transition in another process (in the diagrams synchronization
statements are the statements with an ? or ! suffix). In this case both transitions must occur
at te same time. In this manner the two processes can communicate. Properties checked
checked by UPPAAL are called queries and are specified in a specific query language.

3.2 Modelling Technique

The following conversion method is used to create an UPPAAL model of the lock code. In
case of an if control structure the code chooses to execute the then part if the condition of
the if is true, otherwise the else part. An if control structure is represented in UPPAAL
by two transition from a certain state, with transition conditions. The transition condition is

14

the same as in the if statement, one of them the complement of the condition. Statements
in the body of the then or else part are represented by states and updates in transitions.

statement before if statement before if;

if (a) {

body of then;
} else {

body of else;
}

body of then .
v statement after if;

body of else

statement after if

The while statement executes the body of the while while the condition is satisfied. A while
statement can be modelled by state with two transitions, one from the state (to another
state but eventually) to itself and one to another state, if the condition is not satisfied and
the execution of the code continues with the next statement. The first (looping) transition
contains the condition on which the while continues and leads to a state which executes the
body of the while.

statement before while ‘ statement before while;

while (a) {
body of while;

body of while }
statement after while;

statement after while ‘

Non control statement execution can be modelled by an update to variables by means of a
state transition. In UPPAAL each transition can have an effect when executed, like updating
variables. Several updates can be combined in one transition (in UPPAAL a function needs
to be created for this).

3.3 Modelling the Read-Write Lock

To model check, a model of a thread and the condition lock are made. Below are certain
aspects of the model explained. The model of a thread is shown in figure 3.5 and the model of
the lock is shown in figure[3.1] The different parts of the implementation are a straightforward
conversion as described earlier, almost all variable names are the same. The different functions
of the code are between the ‘begin’ and ‘end’ states. The different parts of the read write lock
implementation are combined into one with a start state and several control variables (the
control code used is listed in figure . These control variables added to the model constrain
the possible operations: a thread is valid if and only if it adheres to the properties stated in
section [2l A thread should only execute valid sequences of operations. A thread can obtain
a write lock several (possibly zero) times and thereafter it can obtain a read lock several
(possibly zero) times, all interleaved with several (possibly zero) times an unlock operation
(note: if after n read lock operations n unlock operations are done, new write lock operations

15

locked

lock? @ unlock?

unlocked

Figure 3.1: UPPAAL model of the condition lock, where the read write lock is based on.

unIockBegin unlockFunc() unIockEnd

count>0 unlock!
I((writeLockedBy != threadid lock! subLock()
&& writeLockedBy = -1)
Il writersWaiting > 0)
lock!
‘ readLockBegin writeLockBegin ‘
unlock!
(writeLockedBy != threadid . it I(lockCount > 0 &&
&8& writeLockedBy != -1) aiting++ writeLockedBy != threadid)
Il writersWaiting > 0 lonlyRead &&
count < maxCount | '

lock!

I((writeLockedBy != threadid end
&& writeLockedBy = -1)

Il writersWaiting > 0)
lockCount++

lockCount > 0 &&
writeLockedBy != threadid
unlock!

unlock! unlock!

addLock(true) addLock(false) l(lockCount > 0 &&

writeLockedBy != threadid)
newWriteLockFunc()

readLockEnd writeLockEnd ‘

Figure 3.2: UPPAAL model of the original version of a thread with as identifier the variable
‘threadid’. The functions used are listed in figure [3.6 and [3.4]

may occur). To prevent a write lock request when a read lock is already obtained, the variable
onlyRead must be false in the thread model for the transition to obtain a write lock. This
variable is set when a read lock is obtained and unset when the correct number of unlocks
are executed (equal to the number of read locks obtained). This way only valid sequences of
locking operations will be model checked.

To test the model UPPAAL must simultaneously check multiple thread models and just
one condition lock model. All possible valid scheduling orders of the threads must be checked.
This non-deterministic behaviour of the code can be modeled by multiple state transitions
which can occur at a given time. UPPA AL will check each possible combination of transitions.
This way all possible scheduling orders are checked.

To communicate between the model of the condition lock and the model of the thread,
synchronization on transitions is done. The condition lock has only two states and in this way
only one thread model can be in a critical section, just like the implementation. If obtaining

16

int lockCount = 0;
int writeLockedBy = —1;
int writersWaiting = 0;

// real functions

void newWriteLockFunc () {
writersWaiting ——;
lockCount++;
writeLockedBy = threadid;

}

void unlockFunc() {
lockCount ——;
if (lockCount = 0) {
writeLockedBy = —1;
}

Figure 3.3: Functions used in the original model of the thread, see|3.3

// control part to only facilitate correct sequences of locking operations
int maxCount = 5;

int count = 0;

bool onlyRead = false;

int resetFlagOn = 0;

void addLock(bool setOnlyRead) {
if (!onlyRead && setOnlyRead) {

resetFlagOn = count;

onlyRead = onlyRead | setOnlyRead;

count—++;
}
void subLock () {
count ——;
if (count = resetFlagOn)
onlyRead = false;
}

Figure 3.4: Functions used in the both models of the thread, see

17

unlockBegin

count >0
lock!

readLockBegin

lock!

c[threadid] ==

lock!

c[threadid] > 0
c[threadid]++

unlock!
I(writeLockedBy == -1 &&
writersWaiting == 0)

newReadLockFunc()
writeLockedBy == -1 &&
writersWaiting ==

readLockEnd

count < maxCount

unlockFunc()

unlock!

unlockEnd

subLock()

writeLockBegin

addLock(true)

unlock!

writeLockedBy
c[threadid]++

addLock(false)

E= threadid

unlock!
numberOfThreads > 0

numbepOfThreads == 0
newWritgl_.ockFunc()

writeLockEnd

Figure 3.5: UPPAAL model of the adjusted version of a thread with as identifier the variable
‘threadid’. The functions used are listed in figure [3.6] and

int numberOfThreads = 0;

int c[16]; // info per thread,
int writeLockedBy = —1; // —1 = none
int writersWaiting = 0;

index

// model of real thread rwlock functions

void newReadLockFunc() {
c[threadid] = 1;
numberOfThreads—++;

}

void newWriteLockFunc () {
writersWaiting ——;
c[threadid] = 1;
numberOfThreads++;
writeLockedBy threadid;

}

void unlockFunc () {
c[threadid]——;
if (c[threadid] = 0) {
numberOfThreads ——;
writeLockedBy = —1;

is threadid

contents is lock count for the thread

Figure 3.6: Functions used in the model of the adjusted thread, see

18

A< @ E[]l ¢

® : ®
OP\O O/?\Q O

Figure 3.7: Different types of UPPAAL queries, used from [I]. The yellow states are the states
in which the condition specified in the query must satisfy, otherwise the statement (consisting
of the operator appended with the condition) is evaluated to false.

O

a lock fails the model retries until obtaining the lock succeeds, this is equivalent with sleeping
of a thread in the implementation.

To limit the number of states (and prevent a state explosion) threads are modelled in
restrained way. Every correct combination of read lock, write locks and unlocks is possible
however only until a depth of 5 (read and/or write) locks. As the implementation of the
lock no decision is made based on the depth of reentrant locks, this is a valid limitation.
The number of threads is limited to 3 concurrent threads. This is also a reasonable limitation
because every combination of states with different threads should occur. Wait/continue cycles
which do not result in state changes are not executed so the model is easier checked. This
also occurs in the code by the notification on the condition lock construct. The limits in the
model of the thread are on the transitions to readLockBegin, writeLockBegin and end.

3.4 Checking the Read-Write Lock

UPPAAL has 5 different types of queries, listed in figure These type of queries can be
checked and validated. For example deadlock can be checked by a A[] query, stating that each
state always must not deadlock. Most queries used are A[] queries, called ‘safery properties’.
[1] As many properties of section should be modelled. The properties checked and its
queries are shown below.

e No deadlocks. This is checked by a single query. All possible states of the model are
checked if there is still a transition possible. This property does not exclude a deadlock
by using multiple locks (like the example in figure 77).

A[] not deadlock

e Exclusive access for thread with a write lock. The query checks that if a thread has a
write lock obtained then the read/write lock data structure must have administrated

19

the thread identifier of the thread as the current thread that has the write lock. If
two threads both has obtained a write lock, one of them is not registered. Since this
property validates this is not the case.
A[] (threadl.end and (not threadl.onlyRead) and threadl.count > 0)

imply writeLockedBy == threadl.threadid

e Consistency checks (e.g., thread count > 0). Many consistency checks were checked,
but not listed.

During model checking the deadlock query was not satisfied for the first version of the
code. UPPAAL gives a state of the model when the deadlock occurs. This error is described
in section [2.3] The second version of the code satisfied the deadlock query as well as the other
queries.

20

Chapter 4

Other implementations

If there is a wrong way to do something, then someone will do it.

— Edward A. Murphy Jr.

The properties of the lock noted in section [2.2] distinguish this type of lock from other read
write locks. Other such locks looked into are standard examples from books (they are often
not reentrant), the implementation of Qt (base library of KDE, Google Earth, Mathematica
and others) by Trolltech (read lock after write lock is not valid) and the Posix Read/Write
lock (read lock after write lock is not valid). The properties of each implementation are listed
in figure [4.1

While analysing the source code of Trolltech’s Qt 4.3, exact the same error was found
as the error noted in section 2.3l Its documentation showed it was a valid situation and
the deadlock possibility was not mentioned. The bug in the implementation was reported to
Trolltech and will be fixed in the next release of Qt, version 4.4. The Posix version suffers from
the same error, but mentions there is a special error code for the situation, although users are
not explicit warned in the main documentation. Other implementation differs significantly
(no condition lock) or are too large to analyse (like Java) so no useful comparison can be
made.

21

Which | 1 |2|3]4]|5]6
PIToolkit (this implementation) X X | x| X

Qt 4.3 X X | %
Standard implementation in figure only read

Posix Threads Read/Write Lock only read X | X | X

Number | Legend

Reentrant

Read lock after write lock is valid

One unlock method

Writers get priority

Deadlock when reentrant requesting a read lock while a write lock is pending
Deadlock noted in the documentation

ST W N~

Figure 4.1: Properties of other implementations.

22

Chapter 5

Future Work

The required techniques of effective reasoning are pretty formal, but as long as
programming is done by people that don’t master them, the software crisis will
remain with us and will be considered an incurable disease. And you know what
incurable diseases do: they invite the quacks and charlatans in, who in this case
take the form of Software Engineering gurus.

— Edsger Dijkstra [3]

To proof a certain piece of software correct is time costly. To assist and minimize errors
a proof assistant, like PVS, can be used. To use a tool like PVS a piece of software must be
translated in the modelling language used by PVS. PVS has a functional modeling language
with a number of limitation on mutual recursive data types. Because of the functional lan-
guage and its limitations it is not trivial to model the concurrency of the imperative code.
A solution is to model threads as a list of actions, a state (waiting, running), a thread iden-
tifier (an integer) and a count of lock recursion of the thread. Valid actions for the thread
are readLock, writeLock and unlock. They must occur in a valid order. A model should
abstract from all other statements in the code of threads, so no work is spent on non-relevant
details (just like the UPPAAL model). The state is ‘running’ (first action in the list not yet
tried), ‘waiting’ (first action tried but failed) or ‘error’ (occurs when unlocking an unlocked
lock). The model described was made, but due time constrains the model was not proved.
Also the model is not optimal to use in a proof assistant as PVS and should be adjusted. It
is left for future work. The model is listed in appendix

23

Chapter 6

Conclusion

There are two ways of constructing a software design: One way is to make it so
simple that there are obviously no deficiencies, and the other way is to make it so
complicated that there are no obuvious deficiencies. The first method is far more

difficult.

— C.A.R. Hoare [4]

The results of this paper consists of finding a serious bug in two implementations of a read
write lock (my own and Trolltech’s Qt), one of which is widely used (Qt). After reporting
the bug is being fixed. Writing of concurrent code is hard. Testing concurrent code can not
guarantee the absence of deadlocks or other bugs. Concurrent code should be modelled in a
tool like UPPAAL, so the reliability is better known. Modelling in UPPAAL is not costly, it
is relatively simple and the results are encouraging.

By correcting the implementation and checking the model a reliable read write lock is
created. This read write lock is reentrant and allows a read lock to be obtained after a write
lock has already been obtained by the same thread. This combination of properties is unique.
Because it is based on a wide-available non-reentrant condition lock, the read write lock can
be implemented on a broad range of platforms and languages.

24

Bibliography

1]

Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on UPPAAL. In Marco
Bernardo and Flavio Corradini, editors, Formal Methods for the Design of Real-Time
Systems: 4th International School on Formal Methods for the Design of Computer,

Communication, and Software Systems, SFM-RT 2004, number 3185 in LNCS, pages

200-236. Springer—Verlag, September 2004.

Edsger W. Dijkstra. The humble programmer (ewd 340). Commun. ACM, 15(10):859-866,
1972.

Edsger W. Dijkstra. Answers to questions from students of software engineering. circulated
privately, November 2000.

Charles Antony Richard Hoare. The emperor’s old clothes. Commun. ACM, 24(2):75-83,
1981.

Merle Johnson. More Maxims of Mark. 1927.

Friedrich Nietzsche. Daybreak Thoughts on the Prejudices of Morality. 1881.

Abraham Silberschatz and Peter Baer Galvin. Operating System Concepts, 5th Ed. John
Wiley & Sons, Inc., New York, NY, USA, 1999.

William Stallings. Operating Systems, Internals and Design Principles, 5th Ed. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 2004.

25

Appendix A

Final Version - C Code

26

// ConditionLock.h — Header
typedef char BOOL;

#define YES 1

#define NO 0

struct ConditionLock {

e

typedef struct ConditionLock ConditionLock;
ConditionLock #conditionlockNew ();

void conditionlockDealloc (ConditionLock % obj);

BOOL conditionlockWriteLock (ConditionLock #lock, BOOL blocking);
void conditionlockUnlock (ConditionLock xlock);
void conditionlockUnlockWithSignalAll(ConditionLock #lock, BOOL signalAll);

// RWLock.h — Header
#define RWLOCKMAXREADERS 16

struct ThreadInfo {
pthread_t threadID ;
pword_u count ;

s

struct RWLock {
ConditionLock xlock ;
// limited to RWLOCKMAXREADERS so it has
// O(1) in place of O(n) with n = number of threads
struct ThreadInfo threads [RWLOCKMAXREADERS] ;

unsigned char numberOfThreads;

unsigned char writersWaiting ;

unsigned char writeLockedBy ;

// if maz —> not writelocked , if < mazr —> numberOfThreads == 1

}s
typedef struct RWLock RWLock;

RWLock srwlockNew ();
void rwlockDealloc (RWLock * obj);

// locking methods,

// if blocking is false always returns true,

// if blocking is true returns if locking operation succeeded
BOOL rwlockReadLock (RWLock *lock , BOOL blocking);

BOOL rwlockWriteLock (RWLock *lock , BOOL blocking);

void rwlockUnlock (RWLock *lock);

// RWLock.c — Implementation
#include "PRWLock.h”

int indexOfThread (struct ThreadInfo threads[], pint-u numberOfThreads,
pthread_t threadID) {
int i;
for (i = 0; i < RWLOCKMAXREADERS && numberOfThreads > 0; i++) {
if (threads[i].count > 0)
if (threads[i].threadID = threadID)
return i;
numberOfThreads ——;

}
}
return RWLOCKMAXREADERS;
}

// returns a free spot in threads, otherwise returns RWLOCKMAXREADERS

// also increases the number of threads

int freeSpot(struct ThreadInfo threads|[], pchar_-u sxnumberOfThreadsPtr) {
int i;

27

for (i = 0; i < RWLOCKMAXREADERS; i++) {

if (threads[i].count = 0) {
(*numberOfThreadsPtr)++;
return i;

}

return RWLOCKMAXREADERS;
}

// set spot to a certain value
void setSpot(struct ThreadInfo threads[], pchar_u current,

pthread_t threadID, pchar_u count) {
assert (current < RWLOCKMAXREADERS) ;

threads[current |.threadID = threadlD;
threads[current |.count = count;

}

RWLock srwlockNew () {

RWLock *0bj = (RWLock*)malloc(sizeof (RWLock));

if (obj) {
obj—>lock = conditionlockNew ();
obj—>numberOfThreads = 0;
obj—>writersWaiting = 0;
obj—>writeLockedBy = RWLOCKMAXREADERS;
int i = 0;
for (i = 0; i < RWLOCKMAXREADERS; i++) {

obj—>threads [i].count = 0;

}

}

return obj;

}

void rwlockDealloc (RWLock * obj) {
if (obj = NULL)
return;
conditionlockDealloc (obj—>lock);
free (obj);

}

BOOL rwlockReadLock (RWLock xself , BOOL blocking) {

if (!conditionlockLock (self —>lock, blocking))
return NO;

BOOL retval = YES;
pthread_t threadID = pthread_self ();

pint_u current = indexOfThread (threads, numberOfThreads, threadID);

if (current < RWLOCKMAXREADERS) {
// found (current thread has already a lock)
threads [current |. count++;
} else {
// new thread (thread has not locked this lock)
while (!(retval numberOfThreads < RWLOCKMAXREADERS && // no free spots
writeLockedBy = RWLOCKMAXREADERS && // not write locked
writersWaiting = 0) & blocking) { // mo writers waiting
conditionlockWait (self —>lock);

if (retval)

setSpot (threads, freeSpot(threads, &numberOfThreads),
threadID, 1);

conditionlockUnlock (self —>lock);
return retval;

28

BOOL rwlockWriteLock (RWLock xself , BOOL blocking) {
if (!conditionlockLock (self —>lock, blocking))
return NO;

BOOL retval = YES;
pthread_t threadID = pthread_self ();

if (writeLockedBy < RWLOCKMAXREADERS &&

threads [writeLockedBy |. threadID = threadID) {
threads [writeLockedBy |. count++;
} else {
writersWaiting++;
// if there are others wait
while (!(retval = numberOfThreads = 0) & blocking) {
conditionlockWait (self —>lock);
}
writersWaiting ——;

if (retval) {

setSpot (threads, writeLockedBy = freeSpot (threads, &numberOfThreads),

threadID, 1);
}
}
conditionlockUnlock (self —>lock);
return retval;

}

BOOL rwlockUnlock (RWLock *self) {
conditionlockLock (self —>lock , YES)

pthread_t threadID = pthread_self ();

pint_-u current = indexOfThread (threads, numberOfThreads,

assert (current < RWLOCKMAXREADERS) ;

threads [current |.count ——;

unsigned int count = threads[current].count;
if (count = 0) {
threads[current]. threadID = 0;
numberOfThreads ——;

writeLocked By = RWLOCKMAXREADERS;

conditionlockUnlockWithSignalAll(self —>lock , count

29

threadID);

Appendix B

PVS model

30

List[T: TYPE]: THEORY

BEGIN
pos(e: T, 1: list[T]) : RECURSIVE nat =
CASES 1 OF
null: O,
cons(hd, tl1):
IF hd = e THEN O ELSE 1 + pos(e, tl1) ENDIF
ENDCASES

MEASURE length(1)

replace(l: list[T], i: below[length(1)], e: T) : RECURSIVE 1list[T] =

CASES 1 OF
null: null,
cons(car, cdr):
IFi=0
THEN
cons(e, cdr)
ELSE
cons(car, replace(cdr, i-1, e))
ENDIF
ENDCASES

MEASURE length(1)

flatten(l:1ist[1ist[T]]) : RECURSIVE list[T] =

CASES 1 OF

null: null,

cons(x,xs): append(x, flatten(xs))
ENDCASES

MEASURE length(1)

insert(l: list[T], i:below[length(1)], e: T) : RECURSIVE list[T] =
IF i = 0 THEN
cons(e, 1)
ELSE
CASES 1 OF
null: null,
cons(hd, tl): cons(hd, insert(tl, i-1, e))

ENDCASES
ENDIF
MEASURE length(1)

END List

RWLockImp : THEORY
BEGIN
% record
RWLock : TYPE = [#
numberQ0fThreads: nat,
writeLockedBy: nat,
writersWaiting: nat
#]

aLock: VAR RWLock

% set
Status: TYPE
WAIT,

RUN,
SIGNAL, % SPECIAL CASE OF RUN
ERROR

}

1]
-~

% set
Action: TYPE = %[[RWLock, Thread] -> LockCmdReturn]
{READLOCK, WRITELOCK, UNLOCK}

% record

31

Thread : TYPE = [#
actions: list[Action],
status: Status,
threadId: nat,
count: nat
#]

% tuple

ActionReturn: TYPE = [
thread: Thread,
lock: RWLock
]

IMPORTING List[Thread]
IMPORTING list_props[Thread]

% model of real code

readLock(t: Thread, 1 : RWLock) : ActionReturn =
IF t‘status = ERROR THEN (t, 1) ELSE
IF t‘status = RUN

THEN
% RUN
IF t‘count > 0 or (l‘writeLockedBy = O and l‘writersWaiting = 0)
THEN
(t with [actions := cdr(t‘actions), count := t‘count+1],
1 with [numberOfThreads := 1‘numberOfThreads + (IF t‘count > O THEN O ELSE 1 ENDIF)])
ELSE
(t with [status := WAIT], 1)
ENDIF
ELSE
% WAIT
IF (1‘writeLockedBy = O and l‘writersWaiting = 0)
THEN
(t with [actions := cdr(t‘actions), count := t‘count+l, status := RUN],
1 with [numberOfThreads := 1‘numberOfThreads + 1])
ELSE
(t, 1
ENDIF
ENDIF
ENDIF

writeLock(t: Thread, 1 : RWLock) : ActionReturn =
IF t‘status = ERROR THEN (t, 1) ELSE
IF t‘status = RUN

THEN
% RUN
IF 1l‘writeLockedBy = t‘threadId or 1‘numberOfThreads = 0
THEN
(t with [actions := cdr(t‘actions), count := t‘count+1],
1 with [numberOfThreads := 1‘numberOfThreads + (IF l‘writeLockedBy = t‘threadId THEN O ELSE 1 ENDIF)])
ELSE
(t with [status := WAIT],
1 with [writersWaiting := l‘writersWaiting+1])
ENDIF
ELSE
% WAIT
IF 1‘number0fThreads = O
THEN
(t with [actions := cdr(t‘actiomns), count := t‘count+1, status := RUN],
1 with [numberOfThreads := 1‘numberOfThreads + 1, writeLockedBy := t‘threadId, writersWaiting := l‘writersWai
ELSE
t,
ENDIF
ENDIF
ENDIF

32

unlock(t: Thread, 1 : RWLock) : ActionReturn =
IF (t‘count > O AND not (t‘status = ERROR))
THEN
(t with [count := t‘count - 1],
1 with [numberOfThreads := 1‘numberOfThreads - (IF t‘count = 1 THEN 1 ELSE O ENDIF), writeLockedBy := IF t‘count
ELSE
(t with [status := ERROR], 1)
ENDIF

% end of model

% execute an action in a specific thread
executeThread(t: Thread, 1: RWLock) : ActionReturn =
IF not null?(t‘actions) THEN
CASES car(t‘actions) OF
READLOCK: readLock(t, 1),
WRITELOCK: writeLock(t, 1),
UNLOCK: unlock(t, 1)
ENDCASES
ELSE
(t with [status := ERROR], 1)
ENDIF

% BOOL indication if there are no actions left in the threads
noActionsInThreads(threads: list[Thread]) : RECURSIVE bool =
CASES threads OF
null: true,
cons(car, cdr): length(car‘actions) = 0 and noActionsInThreads(cdr)
ENDCASES
MEASURE length(threads)

% check if one of the threads has an specific status
threadsStatusExists(threads: list[Thread], status: Status) : RECURSIVE bool =
CASES threads OF
null: false,
cons(car, cdr): car‘status = status or threadsStatusExists(cdr, status)
ENDCASES
MEASURE length(threads)

% BOOL indicating if a specific thread is finished
threadDone (thread: Thread) : bool =
length(thread‘actions) = 0 and thread‘status = RUN

% BOOL indicating if all threads are finished
threadsDone (threads: list[Thread]) : RECURSIVE bool =
CASES threads OF
null: true,
cons(thread, cdr): threadDone(thread) and threadsDone(cdr)
ENDCASES
MEASURE length(threads)

% returns a ‘random’ number below the argument
shuffle(l: nat) : {n: nat | n < 1}

% return the total number of actions in the threads
numberOfActionsInThreads (threads: list[Thread]) : RECURSIVE nat =
CASES threads OF

null: O,
cons(thread, tail): length(thread‘actions) + numberOfActionsInThreads(tail)
ENDCASES

MEASURE length(threads) %length(threads)

% returns the number of threads that are runnable (status = RUN or SIGNAL)
f%numberOf ThreadsRunnable (threads: list[Thread]) : RECURSIVE nat =

% CASES threads OF

% null: O,

33

% cons(thread, tail): (IF thread‘status = RUN or thread‘status = SIGNAL THEN 1 ELSE 0 ENDIF) + numberOfThread:
% ENDCASES

% MEASURE length(threads) %length(threads)

% SAME AS length(activeThreads(arg))

% returns all threads that are runnable
activeThreads(threads: list[Thread]) : RECURSIVE list[Thread] =
CASES threads OF
null: null,
cons(thread, tail): LET tail2 = activeThreads(tail) IN IF (thread‘status = RUN or thread‘status = SIGNAL) :
ENDCASES
MEASURE length(threads);

% checks if the lock is returned ‘empty’
unlocked(1l: RWLock): bool =
1‘number0fThreads = 0

% checks if all threads can be ‘run’
run(threads: list[Thread], 1: RWLock) : RECURSIVE bool =
(threadsDone (threads) and unlocked(l)) or (threadsStatusExists(threads, RUN) and

(
LET i = shuffle(length(activeThreads(threads))) IN
LET e = nth(activeThreads(threads), i) IN

LET retval = executeThread(e, 1) IN
run(replace(threads, i, retval‘l), retval‘2)
))
MEASURE lex2(numberOfActionsInThreads(threads), length(activeThreads(threads)))

% ‘runs’ a specific thread
runnable(thread: Thread, 1: RWLock) : RECURSIVE bool =
(threadDone (thread) AND unlocked(1l)) OR (thread‘status = RUN and

(
LET retval = executeThread(thread, 1) IN
runnable(retval‘l, retval‘2)
)

MEASURE length(thread‘actions)

% te bewijzen:

% - als writelock dan geen readlock die erdoorheen komt
% - max 1 writelock

% - na n locks en n unlocks een lege lock

aThread: VAR Thread
aThread2: VAR Thread

%exclusiveWriteLock: LEMMA
simpleTest: LEMMA % :)
unlock (RUN, 1,
readLock (RUN, 1,
alock with [count := 0, writeLocked := false, writersWaiting := 0, threadId := 0]
)2
‘2

I~

alock with [count := 0, writeLocked := false, writersWaiting := 0, threadId := 0]

simpleTest2: LEMMA 7% :)
unlock (RUN, 1,
writeLock (RUN, 1,
alock with [count := 0, writeLocked := false, writersWaiting := 0, threadId := 0]
)2
‘2

I~

alock with [count := 0, writeLocked := false, writersWaiting := 0, threadId := 0]

simpleTest3: LEMMA 7% :)
LET lock = alock with [count := 1, writeLocked := false, writersWaiting := O, threadId := 0] IN

34

LET threadl = aThread with [status := RUN, actions := cons(UNLOCK, cons(UNLOCK, null)), threadId := 1] IN
LET lockFinal = alLock with [count := O, writeLocked := false, writersWaiting := 0, threadId := 0] IN

LET threadFinal = aThread with [status := RUN, actions := cons(UNLOCK, null), threadId := 1] IN
executeThread(lock, threadl) = (lockFinal, threadFinal)

simpleTest4: LEMMA % :)
LET lock = alock with [count := O, writeLocked := false, writersWaiting := 0, threadId := 0] IN
LET threadl = aThread with [status := RUN, actions := null, threadId := 1] IN
LET threads = cons(threadl, null) IN
run(lock, threads) %, {n: nat | n < length(threads)}) = true

simpleTest5: LEMMA ¥ :)
LET lock = alock with [count := O, writeLocked := false, writersWaiting := 0, threadId := 0] IN
LET threadl = aThread with [status := RUN, actions := cons(READLOCK, cons(UNLOCK, null)), threadId := 1] IN
LET threads = cons(threadl, null) IN
run(lock, threads) %, {n: nat | n < length(threads)}) = true

tail: VAR list[Action]
lockCount: VAR nat
writersWaiting: VAR nat
aThreadId: VAR {x: nat | x > 0}

% acties die kunnen gebeuren bij een lege lock
runLemma: LEMMA
FORALL (thread: Thread)
LET lock = aLock with [count := O, writeLocked := false, writersWaiting := writersWaiting, threadId := 0] IN
runnable(lock, thread) IMPLIES (thread‘actions = null OR
writersWaiting = O AND thread‘actions = cons(READLOCK, tail) OR
thread‘actions = cons(WRITELOCK, tail))

% acties die kunnen gebeuren bij een gereadlockde lock
runLemma2: LEMMA
FORALL (thread: Thread) : lockCount > O AND
LET lock = aLock with [count := lockCount, writeLocked := false, writersWaiting := writersWaiting, threadId := 0]
runnable(lock, thread) IMPLIES ((writersWaiting = O AND thread‘actions = cons(READLOCK, tail)) OR
thread‘actions = cons(UNLOCK, tail))

% acties die kunnen gebeuren bij een gewritelockde
runLemma3: LEMMA
FORALL (thread: Thread) : lockCount > O AND
LET lock = aLock with [count := lockCount, writeLocked := true, writersWaiting := writersWaiting, threadId := aThi
runnable(lock, thread) IMPLIES (thread‘threadId = aThreadId AND thread‘actions = cons(READLOCK, tail)) OR
(thread‘threadId = aThreadId AND thread‘actions = cons(WRITELOCK, tail)) OR
thread‘actions = cons(UNLOCK, tail)

actions: VAR list[Action]

oneThreadProof: LEMMA
%FORALL (actionsl: list[Action])
%LET lock = aLock with [count := O, writeLocked := false, writersWaiting
%LET threadl = aThread with [status := RUN, actions := actions, threadId
LET threads = cons(aThread, null) IN
runnable(alLock, aThread) IMPLIES run(aLock, threads)

0] IN
1] IN

twoThreadProof: LEMMA
%FORALL (actionsl: list[Action]) : FORALL (actions2: list[Action])
%LET lock = aLock with [count := 0, writeLocked := false, writersWaiting := 0] IN
%LET threadl = aThread with [status := RUN, actions := actionsl, threadId := 1] IN
%LET thread2 = aThread with [status := RUN, actions := actions2, threadId := 2] IN
LET threads = cons(aThread, cons(aThread2, null)) IN
(runnable (al.ock, aThread) AND runnable(alock, aThread2) AND not (aThread‘threadld = aThread2‘threadId)) IMPLIES :

END RWLockImp

35

	Introduction
	Read-Write Lock
	Introduction
	Properties
	Implementation

	Modelling in UPPAAL
	UPPAAL
	Modelling Technique
	Modelling the Read-Write Lock
	Checking the Read-Write Lock

	Other implementations
	Future Work
	Conclusion
	Bibliography
	Final Version - C Code
	PVS model

