
Chapter 1

Proof Support for
General Type Classes
Ron van Kesteren1, Marko van Eekelen1, Maarten de Mol1

Abstract: We present a proof rule and an effective tactic for proving properties
about HASKELL type classes by proving them for the available instance defini-
tions. This is not straightforward, because instance definitions may depend on
each other. The proof assistant ISABELLE handles this problem for single param-
eter type classes by structural induction on types. However, this does not suffice
for an effective tactic for more complex forms of overloading. We solve this us-
ing an induction scheme derived from the instance definitions. The tactic based
on this rule is implemented in the proof assistant SPARKLE.

1.1 INTRODUCTION

It is often stated that formulating properties about programs increases robustness
and safety, especially when formal reasoning is used to prove these properties.
Robustness and safety are becoming increasingly important considering the cur-
rent dependence of society on technology. Research on formal reasoning has
spawned many general purpose proof assistants, such as COQ [dt04], ISABELLE
[NPW02], and PVS [OSRSC99]. Unfortunately, these general purpose tools are
geared towards mathematicians and are hard to use when applied to more practical
domains such as actual programming languages.

Because of this, proof assistants have been developed that are geared towards
specific programming languages. This allows proofs to be conducted on the
source program using specifically designed proof rules. Functional languages
are especially suited for formal reasoning because they are referentially transpar-
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class Eq a where
(==) :: a -> a -> Bool

instance Eq Int where
x == y = predefinedeqint x y

instance Eq Char where
x == y = predefinedeqchar x y

instance (Eq a) => Eq [a] where
[] == [] = True
(x:xs) == [] = False
[] == (y:ys) = False
(x:xs) == (y:ys) = x == y && xs == ys

FIGURE 1.1. A type class for equality in HASKELL

ent. Examples of proof assistants for functional languages are EVT [NFD01] for
ERLANG [AV91], SPARKLE [dMvEP01] for CLEAN [vEP01], and ERA [Win99]
for HASKELL [Jon03].

1.1.1 Type classes

A feature that is commonly found in functional programming languages is over-
loading structured by type classes [WB89]. Type classes essentially are groups
of types, the class instances, for which certain operations, the class members,
are implemented. These implementations are created from the available instance
definitions and may be different for each instance. The type of an instance defini-
tion is called the instance head. The equality operator will be used as a running
example throughout this paper (figure 1.1).

In the most basic case, type classes have only one parameter and instance
heads are flat, that is, a single constructor applied to a list of type variables. Fur-
thermore, no two instance definitions may overlap.

Several significant extensions have been proposed, such as multiple parame-
ters [JJM97], overlapping instances, and instantiation with constructors [Jon93],
that have useful applications such as collections, coercion, isomorphisms and
mapping. In this paper, the term general type classes is used for systems of type
classes that support these extensions and non-flat instance heads. Figure 1.2 shows
a multi parameter class for the symmetric operation eq2.

An important observation regarding type classes is that, in general, the defined
instances should be semantically related. For example, all instances of the equal-
ity operator usually implement an equivalence relation. These properties can be
proven for all instances at once by proving them for the available instance defini-
tions. Unfortunately, this is not straightforward because the instance definitions
may depend on each other and hence so will the proofs. For example, equality on
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class Eq2 a b where
eq2 :: a -> b -> Bool where

instance Eq2 Int Int where
eq2 x y = x == y

instance Eq2 Char Char where
eq2 x y = x == y

instance (Eq2 a b, Eq2 b c) => Eq2 (a, b) [c] where
eq2 (x, y) [u, v] = eq2 x u && eq2 y v
eq2 x y = False

instance (Eq2 a b, Eq2 b c) => Eq2 [c] (a, b) where
eq2 x y = eq2 y x

FIGURE 1.2. A multi parameter class in HASKELL

lists is only symmetric if equality on the list members is so as well.

1.1.2 Contributions

The only proof assistant with special support for overloading that we know of
is ISABELLE [Nip93, Wen97], which essentially supports single parameter type
classes and a proof rule for it based on structural induction on types. However, we
show that for general type classes, an effective tactic is not easily derived when
structural induction is used. We use an induction scheme on types based on the
instance definitions to solve this problem. Using this induction scheme, a proof
rule and tactic are defined that are both strong enough and effective.

As a proof of concept, we have implemented the tactic in the proof assistant
SPARKLE for the programming language CLEAN. The results, however, are gen-
erally applicable and can, for example, also be used for HASKELL and ISABELLE,
if ISABELLE would support the specification of general type classes. In fact, the
examples here are presented using HASKELL syntax. SPARKLE is dedicated to
CLEAN, but can also be used to prove properties about HASKELL programs by
translating them to CLEAN using the HACLE translator [Nay04].

1.1.3 Outline

The rest of this paper is structured as follows. First, the proof assistant SPARKLE
is presented (section 1.2). Then, basic definitions for instance definitions, evi-
dence values, and class constrained properties are introduced (section 1.3). After
showing why structural induction does not suffice (section 1.4), the proof rule and
tactic based on the instance definitions are defined (section 1.5) and extended to
multiple class constraints (section 1.6). We end with a discussion of the imple-
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mentation (section 1.7), related and future work (section 1.8), and a summary of
the results (section 1.9).

1.2 SPARKLE

The need for this work arose whilst improving the proof support for type classes
in SPARKLE. SPARKLE is a proof assistant specifically geared towards CLEAN,
which means that it can reason about CLEAN concepts using rules based on
CLEAN’s semantics. Properties are specified in a first order predicate logic ex-
tended with equality on expressions. An example of this, using a slightly simpli-
fied syntax, is:

example: ∀n:Int|n 6=⊥∀a∀xs:[a][take n xs ++ drop n xs = xs]

These properties can be proven using tactics, which are user friendly operations
that transform a property into a number of logically stronger properties, the proof
obligations or goals, that are easier to prove. A tactic is the implementation of
(a combination of) theoretically sound proof rules. Whereas in general a proof
rule is theoretically simple but not very prover friendly, a tactic is prover friendly
but often theoretically more complex. The proof is complete when all remaining
proof obligations are trivial. Some useful tactics are, for example, reduction of
expressions, induction on expression variables, and rewriting using hypotheses.

In SPARKLE, properties that contain member functions can only be proven for
specific instances of that function. For example:

sym[Int]: ∀x:[Int]∀y:[Int][x == y→ y == x]

can be easily proven by induction on lists using symmetry of equality on integers.
Proving that something holds for all instances, however, is not possible in general.
Consider for example symmetry of equality:

sym: ∀a[Eq :: a⇒∀x:a∀y:x[x == y→ y == x]]

where Eq :: a denotes the, previously not available, constraint that equality must
be defined for type a. This property can be split into a property for every instance
definition, which gives among others the property for the instance for lists:

sym[a]: ∀a[Eq :: a⇒∀x:[a]∀y:[a][x == y → y == x]]

It is clear that this property is true as long as it is true for instance a. Unfortunately,
this hypothesis is not available. Using an approach based on induction, however,
we may be able to assume the hypotheses for all instances the instance definition
depends on, and hence will be able to prove the property.

Internally, SPARKLE translates type classes to evidence values or dictionaries
[WB89], that make the use of overloading explicit. The evidence value for a class
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eqint :: Int -> Int -> Bool
eqint = predefinedeqint

eqchar :: Char -> Char -> Bool
eqchar = predefinedeqchar

eqlist :: (a -> a -> Bool) -> ([a] -> [a] -> Bool)
eqlist ev [] [] = True
eqlist ev (x:xs) [] = False
eqlist ev [] (y:ys) = False
eqlist ev (x:xs) (y:ys) = ev x y && eqlist ev xs ys

FIGURE 1.3. Translation of figure 1.1

constraint c :: a is the evidence that there is an (implementation of the) instance
of class c for type a. Hence, an evidence value exists if and only if the class con-
straint is satisfied. As usual, we will use the implementation itself as the evidence
value. A program is translated by converting all instance definitions to functions
(distinct names are created by suffixes). In expressions, the evidence value is sub-
stituted for member applications. When functions require certain classes to be
defined, the evidence values for these constraints are passed as a parameter. Fig-
ure 1.3 shows an example of the result of the translation of the equality class from
figure 1.1.

1.3 PRELIMINARIES

Instead of defining a proof rule that operates on the example properties from sec-
tion 1.2, we define both instances and properties at the level that explicitly uses
evidence values. In this section, basic definitions for instance definitions, evidence
values, and class constrained properties are given.

1.3.1 Instance definitions

Because we intend to support constructor classes, types are formalized by a lan-
guage of constructors [Jon93]:

τ ::= α | X | τ τ′

where α and X range over a given set of type variables and type constructors
respectively. For example, τ can be Int, [Int], and Tree Char, but also the
[], Tree, and -> constructors that take types as an argument and yield a list, tree,
or function type respectively. TV(τ) denotes the set of type variables occurring in
τ. The set of closed types T c is the set of types for which TV(τ) is empty.

Predicates are used to indicate that an instance of a certain class exists. An in-
stance can be identified by an instantiation of the class parameters. The predicate
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c :: τ̄ denotes that there is an instance of the class c for instantiation τ̄ of the class
parameters. For example, Eq :: [Int] and Eq :: (Int, Int) denote that there is
an instance of the Eq class for types [Int] and (Int, Int) respectively:

π ::= c :: τ̄

Because these predicates are used to constrain types to a certain class, they are
called class constraints. Class constraints in which only type variables occur in
the type, for example Eq :: a, are called simple. For reasons of simplicity, it is
assumed that all type variables that occur in a class constraint are distinct.

Without loss of generality, throughout this paper we restrict ourselves to type
classes that have only one member and no subclasses. Multiple members and
subclasses can be supported using records of expressions for the evidence values.
An instance definition:

inst π̄⇒ c :: τ̄ = e

defines an instance τ̄ of class c for types that satisfy class constraints π̄. The
instance definition provides the translated expression e for the class member c.
The functions Head(inst c :: π̄⇒ τ = e) = τ and Context(inst c :: π̄⇒ τ = e) = π̄
will be used to retrieve the instance head and context respectively.

The program context ψ, that contains the function and class definitions, also
includes the available instance definitions. The function Idefsψ(c) returns the set
of instance definitions of class c defined in program ψ.

1.3.2 Evidence values

From the translation from type classes to evidence values, as briefly summarized
in section 1.2, the rule for evidence creation is important for our purpose. Two
definitions are required before it can be defined.

Firstly, because instance definitions are allowed to overlap, a mechanism is
needed that chooses between them. Since the exact definition is not important for
our purpose, we assume that the function Aiψ(c :: τ̄) determines the most specific
instance definition applicable for instance τ̄ of class c. Aiψ is also defined for types
that contain variables as long as it can be determined which instance definition
should be applied.

Secondly, the dependencies of an instance are the instances it depends on:

Deps(c :: τ̄, i) = ∗Head(i)→τ̄(Context(i))

where ∗τ̄→τ̄′ denotes the substitutor that maps the type variables in τ̄ such that
∗(τ̄) = τ̄′. When i is not provided, Aiψ(c :: τ̄) is assumed for it.

Evidence values are now straightforwardly created by applying the expression
of the most specific instance definition to the evidence values of its dependencies:

Deps(π) = 〈π1, . . . ,πn〉
Aiψ(π) = inst c :: π̄′⇒ τ̄′ = e

Evψ(π) = e Evψ(π1) . . . Evψ(πn)
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In proofs, evidence values will be created assuming the evidence values for
the dependencies are already assigned to expression variables:

Deps(π, i) = 〈π1, . . . ,πn〉
i = inst c :: π̄′⇒ τ̄′ = e

Evpψ(π, i) = e evπ1 . . . evπn

assuming that the evidence for π is assigned to the variable evπ. A specific in-
stance definition i can be provided, because Aiψ(π) might not be known in proofs.

1.3.3 Class constrained properties

In SPARKLE, properties are formalized by a first order predicate logic extended
with equality on expressions. The equality on expressions is designed to handle
infinite and undefined expressions well.

We extend these properties with class constraints, that can be used to constrain
types to a certain class. These properties will be referred to as class constrained
properties. For example, consider symmetry and transitivity of equality:

sym: ∀a[Eq :: a⇒∀x,y:a[evEq::a x y→ evEq::a y x]]

trans: ∀a[Eq :: a⇒∀x,y,z:a[evEq::a x y→ evEq::a y z
→ evEq::a x z]]

The property c :: τ̄⇒ p means that in property p it is assumed that τ̄ is an instance
of class c and the evidence value for this class constraint is assigned to evc::τ̄.
Thus, the semantics of the property π⇒ p is defined as p[evπ 7→Evψ(π)].

1.4 STRUCTURAL INDUCTION

The approach for proving properties that contain overloaded identifiers taken in
ISABELLE essentially is structural induction on types. In this section it is argued
that the proof rule for general type classes should use another induction scheme.

Structural induction on types seems an effective approach because it gives
more information about the type of an evidence value. This information can be
used to expand evidence values. For example, evEq::[a] can be expanded to eqlist
evEq::a (see figure 1.3).

Aiψ(π) = i
∀TV(π)[Deps(π)⇒ p(Evp

ψ(π))]
∀TV(π)[π⇒ p(evπ)]

(expand)

More importantly, structural induction allows the property to be assumed for
structurally smaller types. Ideally the hypothesis should be assumed for all de-
pendencies on the same class. Unfortunately, structural induction does not always
allow this for multi parameter classes.
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Consider for example the multi parameter class in figure 1.2. The instance of
Eq2 for [Int] (Char, Char) depends on the instance for Char Int, which
is not structurally smaller because Char is not structurally smaller than [Int],
and Int is not structurally smaller than (Char, Char). Hence, the hypothesis
cannot be assumed for this dependency. This problem can be solved by basing the
induction scheme on the instance definitions.

1.5 INDUCTION ON INSTANCES

The induction scheme proposed in the previous section can be used on the set of
defined instances of a class. In this section, a proof rule and tactic that use this
scheme are defined and applied to some examples.

1.5.1 Proof rule and tactic

We first define the set of instances of a class and an order based on the instance
definitions on it. The well-founded induction theorem applied to the defined set
and order yields the proof rule. Then, the tactic is presented that can be derived
from this rule.

Remember that the instances of a class are identified by sequences of closed
types. τ̄ is an instance of class c if an evidence value can be generated for the class
constraint c :: τ̄. Hence, the set of instances of class c can be defined as:

Instψ(c) = {τ̄ | ∀c′::τ̄′∈Deps(c::τ̄)[τ̄′ ∈ Instψ(c′)]}
For example, Instψ(Eq) = {Int,Char,[Int],[Char],[[Int]], . . .}.

An order on this set is straightforwardly defined. Because the idea is to base
the order on the instance definitions, an instance τ̄′ is considered one step smaller
than τ̄ if the evidence for τ̄ depends on the evidence for τ̄′, that is, if c :: τ̄′ is a
dependency of the most specific instance definition for c :: τ̄. For example, Int
<1

(ψ,Eq) [Int] and [Char] <1
(ψ,Eq) [[Char]].

τ̄ <1
(ψ,c) τ̄′⇔ c :: τ̄′ ∈ Deps(c :: τ̄)

Note that there is a specific set of instances for each class and therefore also a
specific order for each class.

Well-founded induction requires a well-founded partial order, for which we
use the reflexive transitive closure of <1

(ψ,c). It can be easily derived from the
way evidence values are generated that this is indeed a well-founded partial or-
der. Applying this order, ≤(ψ,c), to the well-founded induction theorem yields the
following proof rule:

∀τ̄∈Instψ(c)[∀τ̄′≤(ψ,c)τ̄[p(τ̄′)]→ p(τ̄)]
∀ᾱ∈Instψ(c)[p(ᾱ)]

(inst-rule)

Rewriting the proof rule using the definitions of Instψ(c), ≤(ψ,c), evidence
creation, and class constrained properties results in a tactic that can be directly
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applied to class constrained properties. For all class constraints c :: ᾱ:

∀i∈Idefsψ(c)∀Head(i)∈〈T c〉
[ Deps(c :: Head(i), i)
⇒∀c′::τ̄′∈Deps(c::Head(i),i)[c = c′⇒ p(evc::τ̄′ , τ̄′)]
→ p(Evp

ψ(c :: Head(i), i),Head(i))
]

∀ᾱ∈〈T c〉[c :: ᾱ⇒ p(evc::ᾱ, ᾱ)]
(inst-tactic)

where it is assumed that all variables in Head(i) are fresh. When the tactic is
applied to a class constrained property, it generates a proof obligation for every
available instance definition with hypotheses for all dependencies on the same
class.

1.5.2 Results

The result is both a proof rule and a user friendly tactic. The tactic is nicely illus-
trated by symmetry of equality (figure 1.1 and 1.3). When (inst-tactic) is applied
to:

sym: ∀a[Eq :: a⇒∀x:a∀y:a[evEq::a x y→ evEq::a y x]]

it generates the following three proof obligations (one for each instance defini-
tion):

symInt: ∀x:Int∀y:Int[eqint x y→ eqint y x]

symChar: ∀x:Char∀y:Char[eqchar x y→ eqchar y x]

sym[a]: ∀a [ Eq :: a
⇒∀x:a∀y:a[evEq::a x y→ evEq::a y x]
→∀x:[a]∀y:[a][eqlist evEq::a x y→ eqlist evEq::a y x]

]

which are easily proven using the already available tactics.
The previous step could also have been taken using a tactic based on struc-

tural induction on types. However, (inst-tactic) can also assume hypotheses for
dependencies that are possibly not structurally smaller. Consider for example the
symmetry of eq2 in figure 1.2:

sym2: ∀a,b [ Eq2 :: a b⇒ Eq2 :: b a
⇒∀x:a∀y:b[evEq2::a b x y→ evEq2::b a y x]

]

Applying (inst-tactic) to this property generates a proof obligation for every in-
stance definition, including one for the fourth instance of Eq2 in figure 1.2, where
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eq2list is the translation of that instance definition:

sym2[a]: ∀a,b,c
[ Eq2 :: b a⇒ Eq2 :: c a
⇒ [Eq2 :: a b⇒∀x:b∀y:a[evEq2::b a x y→ evEq2::a b y x]]
→ [Eq2 :: a c⇒∀x:c∀y:a[evEq2::c a x y→ evEq2::a c y x]]
→ Eq2 :: (b,c) [a]⇒∀x:[a]∀y:(b,c)[

eq2list evEq2::b a evEq2::c a x y

→ evEq2::(b,c) [a] y x]
]

In this proof obligation, the hypotheses could not have been assumed when using
structural induction on types (see section 1.4), hence our tactic is useful in more
cases.

1.6 MULTIPLE CLASS CONSTRAINTS

The proof rule and tactic presented in the previous section work well when the
property has only one class constraint. In case of multiple class constraints, how-
ever, the rules might not be powerful enough. In this section it is shown that this
problem does indeed occur. Therefore, a more general proof rule and tactic are
defined and applied to some examples.

The problem

Consider the two class definitions in figure 1.4. The translated instance defini-
tions are respectively called fint, flist, ftree, gint, gtree, and glist at
the level of dictionaries. Given the property:

same: ∀a[f :: a⇒ g :: a⇒ [evf::a x = evg::a x]]

Applying (inst-tactic) yields among others the goal:

same[a]f: ∀a[g :: [a]⇒∀x:[a][flist evg::a x = evg::a x]]

This goal has a non-simple class constraint, which can only be removed by evi-
dence expansion (expand), resulting in:

same[a]f’: ∀a[f :: a⇒ g :: a⇒∀x:[a][flist evg::a x

= glist evf::a evg::a x]]

After some reduction steps, this can be transformed into:
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data Tree a = Leaf | Node a (Tree a) (Tree a)

class f a where f :: a -> Bool

instance f Int where
f x = x == x

instance (g a) => f [a] where
f [] = True
f (x:xs) = g x == g x

instance (f a, g a) => f (Tree a) where
f Leaf = True
f (Node x l r) = f x == g x

class g a where g :: a -> Bool

instance g Int where
g x = x == x

instance (f a) => g (Tree a) where
g Leaf = True
g (Node x l r) = f x == f x

instance (g a, f a) => g [a] where
g [] = True
g (x:xs) = g x == f x

FIGURE 1.4. Problematic class definitions

same[a]f”:∀a[f :: a⇒ g :: a⇒∀x:[a][evg::a x == evg::a x

= evf::a x == evg::a x]]

This proof obligation is true when evf::a x = evg::a x. Unfortunately, the in-
duction scheme did not allow us to assume this hypothesis. Since this problem
is caused by the fact that the type variables occur in more than one class con-
straint, the natural solution is to take multiple class constraints into account in the
induction scheme.

1.6.1 Proof rule and tactic

We take the same approach as in the previous section. We first define the set of
instances, the order, the proof rule and the tactic. Then, in section 1.6.2, it is
shown that the new tactic solves the problem.

First, the set of type sequences that are instances of all classes that occur in a
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list of class constraints is defined. τ̄ is a member of the set if all class constraints π̄
are satisfied when all variables TV(π̄) are replaced by the corresponding type from
τ̄. We assume here that TV(π̄) is a linearly ordered, for example lexicographically,
sequence and that the elements of τ̄ are in the corresponding order. For example,
SetInstψ(f :: a,g :: a) = {Int,[Int],Tree Int,[[Int]], . . .}.

SetInstψ(π̄) = {τ̄ | ∀c::ᾱ′∈π̄[∗TV(π̄)→τ̄(ᾱ′) ∈ Instψ(c)]}

The order on this set is an extension of the order for single class constraints to
sets. A sequence of types τ is considered one step smaller than τ′ if ∗TV(π)→τ(π)
is a subset of the dependencies of ∗TV(π)→τ(π). For example, [Int]<1

(ψ,〈f::a,g::a〉)
([[Int]]) because {f :: [Int],g :: [Int]} is a subset of Deps(g :: [[Int]])∪
Deps(f :: [[Int]]). Here, sequences of class constraints are lifted to sets when
required:

τ̄ <1
ψ,π̄ τ′⇔∗TV(π̄)→τ̄(π̄)⊆

⋃

π∈π̄
[Deps(∗TV(π̄)→τ̄′(π))])

Again, it can be derived from the evidence creation that the reflexive transitive
closure of this order, ≤(ψ,π̄), is a well-founded partial order.

Applying the well-founded induction theorem to this set and order yields the
proof rule for multiple class constraints. For every sequence of simple class con-
straints π̄:

∀τ̄∈SetInstψ(π̄)[∀τ̄′≤(ψ,π̄) τ̄[p(τ̄′)]→ p(τ̄)]
∀τ̄∈SetInstψ(π̄)[p(τ̄)]

(multi-rule)

Because multiple class constraints are involved, defining the final tactic is a
bit more complicated. Instead of all instance definitions, every combination of
instance definitions, one for each class constraint, has to be tried. All of these
instance definitions make assumptions about the types of the type variables, and
these assumptions should be unifiable. Therefore, we define the most general uni-
fier that takes the sharing of type variables across class constraints into account:

SetMgu(〈c1 :: ᾱ1, . . . ,cn :: ᾱn〉,〈τ1, . . . ,τn〉) = ∗⇔
∀1≤i≤n[∗(ᾱi) = τ1] ∧ ∀∗′ [∀1≤i≤n[∗′(ᾱi) = τi]⇒∃∗′′[∗′ = ∗′′ ◦∗]]

Furthermore, for readability of the final tactic, some straightforward extensions of
existing definitions to vectors are used:

Idefsψ(〈π1, . . . ,πn〉) = {i1, . . . , in | i j ∈ Idefsψ(π j)}
Head(〈i1, . . . , in〉) = 〈Head(i1), . . . ,Head(in)〉
Evp

ψ(〈π1, . . . ,πn〉,〈i1, . . . , in〉) = 〈Evp
ψ(π1, i1), . . . ,Evp

ψ(πn, in)〉
ev〈π1,...,πn〉 = 〈evπ1 , . . . ,evπn〉
Deps(〈π1, . . . ,πn〉,〈i1, . . . , in〉) = 〈Deps(π1, i1), . . . ,Deps(πn, in)〉

Finally, using the presented definitions, evidence creation, class constrained prop-
erties, and the proof rule, the tactic can be defined. For every sequence of simple
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class constraints π̄:

∀ı̄∈Idefsψ(π̄)∃∗|∗=SetMgu(π̄,Head(ı̄))∀∗(Head(ı̄))∈〈T c〉
[ Deps(∗(π̄), ı̄)
⇒∀∗′|∗′(π̄)⊆Deps(∗(π̄),ı̄)[p(ev∗′(π̄),∗′(TV(π̄)))]
→ p(Evp

ψ(∗(π̄), ı̄),∗(Head(ı̄)))
]

∀TV(π̄)[π̄⇒ p(evπ̄,TV(π̄))]
(multi-tactic)

Note that applying this tactic may result in non-simple class constraints when
non-flat instance types are used. For non-simple class constraints, the induction
tactics cannot be applied, but the (expand) rule might be used. However, in prac-
tice most instance definitions will have flat types.

This solution for multiple class constraints has some parallels to the constraint
set satisfiability problem (CS-SAT), the problem of determining if there are types
that satisfy a set of class constraints. The general CS-SAT problem is undecidable.
However, recently, an algorithm was proposed [CFV04] that essentially tries to
create a type that satisfies all constraints by trying all combinations of instance
definitions, as we have been doing in our tactic.

1.6.2 Results

In this section, we have generalized the proof rule and tactic from section 1.5
to multiple class constraints. In case of a single class constraint, the new rules
behave exactly the same as (inst-rule) and (inst-tactic). However, now we can
apply (multi-tactic) to multiple class constraints at once. Given the previously
problematic property:

same: ∀a[f :: a⇒ g :: a⇒ [evf::a x = evg::a x]]

this yields three proof obligations, one for every unifiable combination of instance
definitions:

sameInt: ∀a[fint x = gint x]

same[a]: ∀a[f :: a⇒ g :: a⇒∀x:a[evf::a x = evg::a x]
→∀x:[a][flist evg::a x = glist evf::a evg::a x]]

sameTree a:∀a[f :: a⇒ g :: a⇒∀x:a[evf::a x = evg::a x]
→∀x:Tree a[ftree evf::a evg::a x = gtree evg::a x]

The goal same[a] (and sameTree a) now has a hypothesis that can be used to prove
the goal using the already available tactics. Hence, by taking multiple class con-
straints into account the problem is solved.
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1.7 IMPLEMENTATION

As a proof of concept, we have implemented the (multi-tactic) tactic extended
for multiple members and subclasses in SPARKLE. Because of the similarity to
the already available induction tactic and the clearness of the code, the implemen-
tation of the tactic took very little time. However, to implement the tactic, the
typing rules had to be extended. The translation of type classes to dictionaries is
only typeable in general using rank-2 polymorphism, which is currently not sup-
ported by SPARKLE. This was worked around by handling the dictionary creation
and selection in a way that hides the rank-2 polymorphism. Ideally, the use of
dictionaries should be completely hidden from the user as well.

The tactic has been used to prove, amongst others, the examples in this paper.
The implementation is available at:
http://www.student.kun.nl/ronvankesteren/SparkleGTC.zip

1.8 RELATED AND FUTURE WORK

As mentioned in section 1.1, the general proof assistant ISABELLE [NPW02] sup-
ports overloading and single parameter type classes. ISABELLE’s notion of type
classes is somewhat different from HASKELL’s in that it represents types that sat-
isfy certain properties instead of types for which certain values are defined. Nev-
ertheless, the problems to be solved are equivalent. ISABELLE [Nip93, Wen97]
uses a proof rule based on structural induction on types, which suffices for the
supported type classes. However, if ISABELLE would support more extensions,
most importantly multi parameter classes, it would be useful to define our proof
rule and a corresponding tactic in ISABELLE.

Essentially, the implementation of the tactic we proposed extends the induc-
tion techniques available in SPARKLE. Leonard Lensink proposed and imple-
mented extensions of SPARKLE for induction and co-induction for mutually re-
cursive functions and data types [LvE04]. The main goal was to ease proofs by
making the induction scheme match the structure of the program. Together with
this work this significantly increases the applicability of SPARKLE.

Because generics is often presented as an extension of type classes [HJ00],
it would be nice to extend this work to generics as well. Currently, in CLEAN
generics are translated to normal type classes where classes are created for every
available data type [AP01]. There is a library for HASKELL that generates classes
with boilerplate code for every available data type [LJ03]. The tactic presented
here can already be used to prove properties about generic functions by working
on these generated type classes. However, the property is only proven for the
data types that are used in the program and a separate proof is required for each
data type. That is, after all, the main difference between normal type classes and
generics. Hence, it remains useful to define a proof rule specifically for generics.
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1.9 CONCLUSION

In this paper, we have presented a proof rule for class constrained properties and
an effective tactic based on it. Although structural induction on types is theo-
retically powerful enough, we showed that for an effective tactic an induction
scheme should be used that is based on the instance definitions. The tactic is ef-
fective, because, using the defined proof rule, it allows all sensible hypotheses to
be assumed. The rule and tactic were first defined for single class constraints and
then generalized to properties with multiple class constraints.

As a proof of concept, the resulting tactic is implemented in SPARKLE for
the programming language CLEAN, but it can also be used for proving properties
about HASKELL programs. This is, to our knowledge, the first implementation of
an effective tactic for general type classes. If ISABELLE would support extensions
for type classes, the tactic could be implemented in ISABELLE as well.
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