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Abstract. The classic readers-writers problem has been extensively stud-
ied. This holds to a lesser degree for the reentrant version, where it is
allowed to nest locking actions. Such nesting is useful when a library
is created with various procedures that each start and end with a lock.
Allowing nesting makes it possible for these procedures to call each other.
We considered an existing widely used industrial implementation of the
reentrant readers-writers problem. We modeled it using a model checker
revealing a serious error: a possible deadlock situation. The model was
improved and checked satisfactorily for a fixed number of processes. To
achieve a correctness result for an arbitrary number of processes the
model was converted to a theorem prover with which it was proven.

1 Introduction

It is generally acknowledged that the growth in processor speed is reaching a hard
physical limitation. This has led to a revival of interest in concurrent processing.
Also in industrial software, concurrency is increasingly used to improve efficiency
[26]. It is notoriously hard to write correct concurrent software. Finding bugs
in concurrent software and proving the correctness of (parts of) this software is
therefore attracting more and more attention, in particular where the software
is in the core of safety critical or industrial critical applications.

However, it can be incredibly difficult to track concurrent software bugs down.
In concurrent software bugs typically are caused by infrequent ’race conditions’
that are hard to reproduce. In such cases, it is necessary to thoroughly investigate
‘suspicious’ parts of the system in order to improve these components in such a
way that correctness is guaranteed.

Two commonly used techniques for checking correctness of such system are
formal verification and testing. In practice, testing is widely and successfully
used to discover faulty behavior, but it cannot assure the absence of bugs. In
particular, for concurrent software testing is less suited due to the typical char-
acteristics of the bugs (infrequent and hard to reproduce). There are roughly two
approaches to formal verification: model checking and theorem proving. Model
checking [6, 23] has the advantage that it can be performed automatically, pro-
vided that a suitable model of the software (or hardware) component has been
created. Furthermore, in the case a bug is found model checking yields a coun-
terexample scenario. A drawback of model checking is that it suffers from the



state-space explosion and typically requires a closed system. In principle, theo-
rem proving can handle any system. However, creating a proof may be hard and
it generally requires a large investment of time. It is only partially automated
and mainly driven by the user’s understanding of the system. Besides, when
theorem proving fails this does not necessarily imply that a bug is present. It
may also be that the proof could not be found by the user.

In this paper we consider the reentrant readers-writers problem as a formal
verification case study. The classic readers-writers problem [8] considers multiple
processes that want to have read and/or write access to a common resource (a
global variable or a shared object). The problem is to set up an access protocol
such that no two writers are writing at the same time and no reader is accessing
the common resource while a writer is accessing it. The classic problem is stud-
ied extensively[22]; the reentrant variant (in which locking can be nested) has
received less attention so far although it is used in Java, C# and C++ libraries.

We have chosen a widely used industrial library (Trolltech’s Qt) that provides
methods for reentrant readers-writers. For this library a serious bug is revealed
and removed. This case study is performed in a structured manner combining
the use of a model checker with the use of a theorem prover exploiting the
advantages of these methods and avoiding their weaknesses.

In Section 2 we will introduce the case study. Its model will be defined,
improved and checked for a fixed number of processes in Section 3. Using a
theorem prover the model will be fully verified in Section 4. Finally, related
work, future work and concluding remarks are found in Sections 5 and 6.

2 The readers-writers problem

If in a concurrent setting two threads are working on the same resource, syn-
chronization of operations is often necessary to avoid errors. A test-and-set op-
eration is an important primitive for protecting common resources. This atomic
(i.e. non-interruptible) instruction is used to both test and (conditionally) write
to a memory location. To ensure that only one thread is able to access a resource
at a given time, these processes usually share a global boolean variable that is
controlled via test-and-set operations, and if a process is currently performing
a test-and-set, it is guaranteed that no other process may begin another test-
and-set until the first process is done. This primitive operation can be used to
implement locks. A lock has two operations: lock and unlock. The lock operation
is done before the critical section is entered, and the unlock operation is per-
formed after the critical section is left. The most basic lock can only be locked
one time by a given thread. However, for more sophisticated solutions, just an
atomic test-and-set operation is insufficient. This will require support of the un-
derlying OS: threads acquiring a lock already occupied by some thread should
be de-scheduled until the lock is released. A variant of this way of locking is
called condition locking : a thread can wait until a certain condition is satisfied,
and will automatically continue when notified (signalled) that the condition has
been changed. An extension for both basic and condition locking is reentrancy,
i.e. allowing nested lock operations by the same thread.
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A so-called read-write lock functions differently from a normal lock: it either
allows multiple threads to access the resource in a read-only way, or it allows
one, and only one, thread at any given time to have full access (both read
and write) to the resource ([10]). These locks are the standard solution to the
producer/consumer problem in which a buffer has to be shared.

Several kinds of solutions to the classical readers-writers problem exist. Here,
we will consider a read-write locking mechanism with the following properties.

writers preference Read-write locks suffer from two kinds of starvation, one
with each kind of lock operation. Write lock priority results in the possibility
of reader starvation: when constantly there is a thread waiting to acquire a
write lock, threads waiting for a read lock will never be able to proceed. Most
solutions give priority to write locks over read locks because write locks are
assumed to be more important, smaller, exclusive, and to occur less.

reentrant A thread can acquire the lock multiple times, even when the thread
has not fully released the lock. Note that this property is important for mod-
ular programming: a function holding a lock can use other functions which
possibly acquire the same lock. We distinguish two variants of reentrancy:

1. Weakly reentrant : only permit sequences of either read or write locks;
2. Strongly reentrant : permit a thread holding a write lock to acquire a read

lock. This will allow the following sequence of lock operations: write lock,
read lock, unlock, unlock. Note that the same function is called to unlock
both a write lock and a read lock. The sequence of a read lock followed by
a write lock is not admitted because of the evident risk of a deadlock (e.g.
when two threads both want to perform the locking sequence read lock,
write lock they can both read but none of them can write).

2.1 Implementation of Read-Write locks

In this section we show the C++ implementation of weakly reentrant read/write
locks being part of the multi-threading library of the Qt development framework,
version 4.3. The code is not complete; parts that are not relevant to this presen-
tation are omitted. This implementation uses other parts of the library: threads,
mutexes and conditions. Like e.g. in Java, a condition object allows a thread
that owns the lock but that cannot proceed, to wait until some condition is sat-
isfied. When a running thread completes a task and determines that a waiting
thread can now continue, it can call a signal on the corresponding condition.
This mechanism is used in the C++ code listed in Figure 1.

The structure QReadWriteLockPrivate contains the attributes of the class.
These attributes are accessible via an indirection named d. The attributes mutex,
readerWait and writerWait are used to synchronize access to the other admin-
istrative attributes, of which accessCount keeps track of the number of locks (in-
cluding reentrant locks) acquired for this lock. A negative value is used for write
access and a positive value for read access. The attributes waitingReaders and
waitingWriters indicate the number of threads requesting a read respectively
write permission, that are currently pending. If some thread owns the write lock,
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struct QReadWriteLockPrivate

{

QReadWriteLockPrivate()

: accessCount(0),

currentWriter(0),

waitingReaders(0),

waitingWriters(0)

{ }

QMutex mutex;

QWaitCondition readerWait,

writerWait;

Qt::HANDLE currentWriter;

int accessCount,waitingReaders,

waitingWriters;

};

void QReadWriteLock::lockForRead()

{

QMutexLocker lock(&d->mutex);

while (d->accessCount < 0 ||

d->waitingWriters) {

++d->waitingReaders;

d->readerWait.wait(&d->mutex);

--d->waitingReaders;

}

++d->accessCount;

Q_ASSERT_X(d->accessCount>0,

"...","...");

}

void QReadWriteLock::lockForWrite()

{

QMutexLocker lock(&d->mutex);

Qt::HANDLE self =

QThread::currentThreadId();

while (d->accessCount != 0) {

if (d->accessCount < 0 &&

self == d->currentWriter) {

break; // recursive write lock

}

++d->waitingWriters;

d->writerWait.wait(&d->mutex);

--d->waitingWriters;

}

d->currentWriter = self;

--d->accessCount;

Q_ASSERT_X(d->accessCount<0,

"...","...");

}

void QReadWriteLock::unlock()

{

QMutexLocker lock(&d->mutex);

Q_ASSERT_X(d->accessCount!=0,

"...","...");

if ((d->accessCount > 0 &&

--d->accessCount == 0) ||

(d->accessCount < 0 &&

++d->accessCount == 0)) {

d->currentWriter = 0;

if (d->waitingWriters) {

d->writerWait.wakeOne();

} else if (d->waitingReaders) {

d->readerWait.wakeAll();

}

}

}

Fig. 1. QReadWriteLock class of Qt

currentWriter contains a HANDLE to this thread; otherwise currentWriter is
a null pointer.

The code itself is fairly straightforward. The locking of the mutex is done
via the constructor of the wrapper class QMutexLocker. Unlocking this mutex
happens implicitly in the destructor of this wrapper. Observe that a write lock
can only be obtained when the lock is completely released (d->accessCount
== 0), or the thread already has obtained a write lock (a reentrant write lock
request, d->currentWriter == self).

The code could be polished a bit. E.g. one of the administrative attributes
can be expressed in terms of the others. However, we have chosen not to deviate
from the original code, except for the messages in the assertions which were, of
course, more informative.
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3 Model checking readers/writers with Uppaal

Uppaal [17] is a tool for modeling and verification of real-time systems. The
idea is to model a system using timed automata. Timed automata are finite
state machines with time. A system consists of a collection of such automata.
An automaton is composed of locations and transitions between these locations
defining how the system behaves. To control when to fire a transition one can
use guarded transitions and synchronized transitions. Guards are just boolean
expressions whereas the synchronization mechanism is based on hand-shakes:
two processes (automata) can take a simultaneous transition, if one does a send,
ch!, and the other a receive, ch?, on the same channel ch. For administration
purposes, but also for communication between processes, one can use global
variables. Moreover, each process can have its own local variables. Assignments
to local or global variables can be attached to transitions as so-called updates.

In this paper we will not make use of time. In Uppaal terminology: we don’t
have clock variables. Despite the absence of this most distinctive feature of
Uppaal, we have still chosen to use Uppaal here because of our local expertise and
the intuitive and easy to use graphical interface which supports understanding
and improving the model in a elegant way. The choice of model checker is however
not essential for the case study. It could also have been performed with any other
model checker such as e.g. SMV [19], mCRL2 [11] or SPIN [14].

Constructing the Uppaal model

Our intention is to model the code from Figure 1 as an abstract Uppaal model,
preferably in a way that the distance between code and model is kept as small
as possible. However, instead of trying to model Qt-threads in Uppaal we will
directly use the built-in Uppaal processes to represent these threads. Thread
handles are made explicit by numbering the processes, and using these numbers
as identifications. NT is the total number of processes. The identification numbers
are denoted by tid in the model, ranging 0 to NT - 1. The NT value is also used
to represent the null pointer for the variable currentWriter in the C++ code.
Mutexes and conditions directly depend on the thread implementation, so we
cannot model these objects by means of code abstraction. Instead we created an
abstract model in Uppaal that essentially simulates the behavior of these objects.
The result is shown in Figure 2. In this basic locking model, method calls are
simulated via synchronization messages. The conditions are represented by two
integer variables, sleepingReaders and sleepingWriters, that maintain the
number of waiting readers and waiting writers, respectively. A running process
can signal such a process which will result in a wake up message. A process
receiving such a message should always immediately try to acquire the lock,
otherwise mutual exclusion is not guaranteed anymore.

The RWLock implementation is model checked using the combination of this
basic locking process with a collection of concurrent processes, each continuously
performing either a lockForRead, lockForWrite, or unlock step. The abstract
model (see Figure 3) is obtained basically by translating C++ statements into
transitions.
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Locked

Unlocked

writerWait?
sleepingWriters++

sleepingWriters > 0

wakeOne!
sleepingWriters--

sleepingWriters == 0

signalOneWriter?

sleepingReaders>0
wakeAll!
sleepingReaders--

sleepingReaders==0

signalAllReaders?

 readerWait ?

sleepingReaders++

unlock?lock?

Fig. 2. Mutex and condition model

For convenience of comparison, we have split the model into three parts, cor-
responding to lockForRead, writeLock and unlock respectively. These parts
can be easily combined into a single model by collapsing the Start states,
and, but not necessarily, the Abort states. The auxiliary functions testRLock,
testWLock, and testReentrantWLock are defined as:

bool testRLock(ThreadId tid)

{ return waitingWriters>0 ||(currentWriter!=NT && currentWriter!=tid);}

bool testWLock (ThreadId tid)

{ return accessCount != 0 &&

currentWriter != tid;

}

bool testReentrantWLock (ThreadId tid)

{ return accessCount != 0 &&

tid == currentWriter;

}

If a process performs a lock operation it will enter a location that is labeled with
EnterXX. Here, XX corresponds to the called operation. The call is left via a LeaveXX lo-
cation. For example, if a thread invokes lockForRead it will enter the location EnterRL.
Hereafter, the possible state transitions directly reflect the corresponding flow of control
in the original code for this method. The call ends at LeaveRL. These special locations
are introduced to have a kind of separation between definition and usage of methods.
If the thread was suspended (due to a call to the wait method on the readerWait

condition) the process in the abstract model will be waiting in the location RWait.
The wrapper QMutexLocker has been replaced by a call to lock. To take the effect of
the destructor into account, we added a call to unlock at the end of the scope of the
wrapper object. Furthermore, observe that assertions are modeled as a ‘black hole’: a
state, labeled Abort, from which there is no escape possible.

Checking the model

The main purpose of a model checker is to verify the model w.r.t. a requirement
specification. In Uppaal, requirements are specified as queries consisting of path and
state formulae. The latter describe individual states whereas the former range over
execution paths or traces of the model. In Uppaal, the (state) formula A[] ϕ expresses
that ϕ should be true in all reachable states. deadlock is a built-in formula which is
true if the state has no outgoing edges.

In our example we want to verify that the model is deadlock-free, which is a state
property. This can easily be expressed by means of the following query:

A [ ] not deadlock
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lockForRead

Abort

LeaveRL

EnterRL RWaitReadLock

Start

accessCount++

accessCount > 0

unlock!

accessCount <= 0 lock!
waitingReaders--

lock!

wakeAll?

testRLock (tid)

readerWait !

waitingReaders++!testRLock (tid)

lockForWrite

Abort

LeaveWL

EnterWL

WWait

WriteLock

Start

accessCount >= 0

accessCount < 0

unlock!

!testWLock(tid)

testReentrantWLock(tid)

!testReentrantWLock(tid)
writerWait!

waitingWriters++

lock! waitingWriters--

wakeOne?testWLock(tid)

currentWriter=tid,
accessCount--

lock!

unlock

LeaveUN

Abort

EnterUN

Start

waitingWriters == 0 &&
   waitingReaders > 0

signalAllReaders!

accessCount == 0

unlock!

waitingWriters == 0 &&
    waitingReaders == 0

waitingWriters > 0

signalOneWriter!

accessCount < 0 accessCount++

accessCount != 0

accessCount==0 currentWriter = NT

lock!

accessCount > 0 accessCount--

Fig. 3. Uppaal models of the locking primitives

When running Uppaal on this model consisting of 2 threads, the verifier will almost
instantly respond with: Property is not satisfied. The trace generated by Uppaal
shows a counter example of the property, in this case a scenario leading to a deadlock.
The problem is that if a thread, which is already holding a read lock, does a (reentrant)
request for another read lock, it will be suspended if another thread is pending for a
write lock (which is the case if the write lock was requested after the first thread
obtained the lock for the first time). Now both threads are waiting for each other.

3.1 Correcting the implementation/model

The solution is to let a reentrant lock attempt always succeed. To avoid writers starva-
tion, new read lock requests should be accepted only if there are no writers waiting for
the lock. To distinguish non-reentrant and reentrant uses, we maintain, per thread, the
current number of nested locks making no distinction between read and write locks.
Additionally, this solution allows strongly reentrant use. In the implementation this is
achieved by adding a hash map (named current of type QHash) to the attributes of
the class that maps each thread handle to a counter. To illustrate our adjustments, we
show the implementation of lockForRead 1.

1 For the complete code, see www.cs.ru.nl/∼sjakie/papers/readerswriters/.
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void QReadWriteLock::lockForRead() {

QMutexLocker lock(&d->mutex);

Qt::HANDLE self = QThread::currentThreadId();

QHash<Qt::HANDLE, int>::iterator it = d->current.find(self);

if (it != d->current.end()) {

++it.value();

Q_ASSERT_X(d->numberOfThreads > 0, "...", "...");

return;

}

while (d->currentWriter != 0 || d->waitingWriters > 0) {

++d->waitingReaders;

d->readerWait.wait(&d->mutex);

--d->waitingReaders;

}

d->current.insert(self, 1);

++d->numberOfThreads;

Q_ASSERT_X(d->numberOfThreads> 0, "...", "...");

}

To verify this implementation we again converted the code to Uppaal. Since handles
where represented by integers ranging from 0 to NT - 1 (where NT denotes the number
of threads), we can use a simple integer array to maintain the number of nested locks per
thread, instead of a hash map. In this array, the process id is used as an index. Figure
4 shows the part of the Uppaal model that corresponds to the improved lockForRead.
For the full Uppaal model, see www.cs.ru.nl/∼sjakie/papers/readerswriters/.

BeginRL

EndRL

Abort

RBlockedLeaveRL

EnterRL RWaitReadLock

Start

current[tid] == 0

current[tid] > 0

current[tid]++

numberOfThreads > 0
unlock!

numberOfThreads <= 0

lock!
waitingReaders--

lock!

readNest++

readNest <
   maxNest

wakeupReader?

currentWriter != NT ||
   writersWaiting > 0

readersWait!
waitingReaders++

!(currentWriter != NT ||
    writersWaiting > 0)

current[tid] = 1,
numberOfThreads++

Fig. 4. Uppaal model of the correct version of lockForRead

To limit the state space we have added an upper bound maxNest to the nesting
level and a counter readNest indicating the current nesting level. This variable is
decremented in the unlock part of the full model. Running Uppaal on the improved
model will, not surprisingly, result in the message: Property is satisfied. In this
experiment we have limited the number of processes to 4, and the maximum number
of reentrant calls to 5. If we increase these values slightly, the execution time worsens
drastically. So, for a complete correctness result, we have to proceed differently.

4 General reentrant readers-writers model

In this section we will formalize the Uppaal model in PVS [21].
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We prove that the reentrant algorithm is free from deadlock when we generalize to any
number of processes. While explaining the formalization we will briefly introduce PVS.
For the complete PVS specification, see www.cs.ru.nl/∼sjakie/papers/readerswriters/.

4.1 Readers-Writers model in PVS

PVS offers an interactive environment for the development and analysis of formal
specifications. The system consists of a specification language and a theorem prover.
The specification language of PVS is based on classic, typed higher-order logic. It
resembles common functional programming languages, such as Haskell, LISP or ML.
The choice of PVS as the theorem prover to model the readers writers locking algorithm
is purely based upon the presence of local expertise. The proof can be reconstructed
in any reasonably modern theorem prover, for instance Isabelle [20] or Coq[5]. There
is no implicit notion of state in PVS specifications. So, we explicitly keep track of a
system state that basically consists of the system variables used in the Uppaal model.

In the Uppaal model a critical section starts with a lock! and ends with either a
unlock!, readersWait! or writersWait! synchronization. Not all the state transitions
are modelled individually in the PVS model. All actions occuring inside a critical section
are modeled as a single transition. This makes the locking mechanism protecting the
critical sections superfluous in the PVS model and enables us to reduce the number of
different locations. Only these locations in the Uppaal model that are outside a critical
section are needed and are tracked by the ThreadLocation variable. Furthermore, the
EnterXX and LeaveXX locations are ignored, because they are only used as a label for
a function call and have no influence on the behavior of the modeled processes.

With NT denoting the total number of processes, we get the following representation:

ThreadID : TYPE = below(NT)2

ThreadLocation : TYPE = { START , RWAIT , RBLOCKED , WWAIT , WBLOCKED }

ThreadInfo : TYPE = [# status : ThreadLocation , current : nat # ]3

System : TYPE = [# waitingWriters , waitingReaders ,
numberOfThreads : nat ,
currentWriter : below(NT+1) ,

threads : ARRAY [ThreadID → ThreadInfo ] # ]4

The auxiliary variables readNest, writeNest and maxNest restrict the Uppaal
model to a maximum number of nested reads and writes. They also prevent unwanted
sequences of lock/unlock operations, e.g. when a write lock request occurs after a read
lock has already been obtained. In the PVS model we allow for any amount of nesting,
so the variables writeNest and maxNest introduced to limit nesting can be discarded.
The readNest variable is used to check whether there already is a read lock present
when a write lock is requested. In the PVS model we have implemented this check by
testing whether the lock counter for this particular thread is 0 before it starts waiting
for a (non-reentrant) write lock. The logic behind it is that if, previously, a read lock
had been obtained by this thread, the counter would have been unequal to 0.

Because none of the variable updates in the Uppaal model occur outside of a critical
section, we can model the concurrent execution of the different processes obtaining
writelocks, readlocks and releasing them by treating them as interleaved functions.

2 Denotes the set of natural numbers between 0 and NT, exclusive of NT.
3 Recordtypes in PVS are surrounded by [# and #].
4 Arrays in PVS are denoted as functions.
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We first define a step function that executes one of the possible actions for a single
process. The step function is restricted to operate on a subset of the System data type,
signified by the validState? predicate, further explained in Section 4.3. The actions
themselves do not deliver just a new state but a lifted state. In PVS, the predefined
lift datatype, consisting of two constructors up and bottom, adds a bottom element to
a given base type, in our case validState? incorporating the state of the model. This
is useful for defining partial functions, particularly to indicate the cases that certain
actions are not permitted.

In essence the step function corresponds to the center of the Uppaal model consist-
ing of the Start and the EnterXX/LeaveXX states.

step(tid:ThreadID , s1 , s2: (validState?) ): bool =
writelock(s1 ,tid) = up(s2) ∨ readlock(s1 ,tid) = up(s2) ∨

unlock(s1 ,tid) = up(s2)

The predicate interleave simulates parallel execution of threads.

interleave (s1 ,s2:System): bool =
∃ (tid:ThreadID): step(tid ,s1 ,s2) ∧

∀ (other_tid: ThreadID): other_tid 6= tid ⇒

s1 ‘threads(other_tid) = s2 ‘threads(other_tid) 5

4.2 Translation from Uppaal to PVS

The functions that perform the readlock, writelock and unlock respectively are essen-
tially the same as in the original code. It is very well possible to derive the code auto-
matically from the Uppaal model by identifying all paths that start with a lock! action
on its edge and lead to the first edge with an unlock!, readersWait! or writersWait!
action. The readlock function is provided as an example of this translation. For in-
stance, the round trip in Figure 4 from the Start location, through BeginRL directly
going to EndRL, has guard current[tid] > 0, and action current[tid]++; associ-
ated with it. It starts and ends in the START location of the PVS model. This can be
recognized as a part of the code of the readlock function below.

readlock(s1:(validState?) , tid:ThreadID) : lift [ (validState?) ] =
LET thread = s1 ‘threads(tid) IN

CASES thread ‘status OF

START:

IF thread ‘current > 0
THEN up(s1 WITH [threads := s1 ‘threads WITH

[tid := thread WITH [current := thread ‘current+1 ] ] ] )
ELSIF s1 ‘currentWriter 6= NT∨ s1 ‘waitingWriters > 0
THEN up(s1 WITH [waitingReaders := s1 ‘waitingReaders + 1,

threads := s1 ‘threads WITH

[tid := thread WITH [status := RWAIT ] ] ] )
ELSE up(s1 WITH [ numberOfThreads := s1 ‘numberOfThreads + 1,

threads := s1 ‘threads WITH

[tid := thread WITH [current := 1] ] ] )
ENDIF,

RBLOCKED:

5 The ‘ operator denotes record selection.
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IF s1 ‘currentWriter 6= NT∨ s1 ‘waitingWriters > 0
THEN up(s1)
ELSE up(s1 WITH [ numberOfThreads := s1 ‘numberOfThreads + 1,

waitingReaders := s1 ‘waitingReaders - 1,
threads := s1 ‘threads WITH

[tid := thread WITH [current := 1, status := START ] ] ] )
ENDIF

ELSE:

up(s1)
ENDCASES

4.3 System invariants

Not every combination of variables will be reached during normal execution of the
program. Auxiliary variables are maintained that keep track of the total amount of
processes that are in their critical section and of the number of processes that are
waiting for a lock. We express the consistency of the values of those variables by using
a validState? predicate. This is an invariant on the global state of all the processes
and essential in proving that the algorithm is deadlock free. We want to express in this
invariant that the global state is sane and safe. Sanity is defined as:

– The value of the waitingReaders should be equal to the total number of processes
with a status of RWAIT or RBLOCKED.

– The value of the waitingWriters should be equal to the total number of processes
with a status of WWAIT or WBLOCKED.

– The value of the numberOfThreads variable should be equal to the number of pro-
cesses with a lock count of 1 or higher.

Besides the redundant variables having sane values, we also prove that the invariant
satisfies that any waiting process has a count of zero current readlocks, stored in the
current field of ThreadInfo. Furthermore, if a process has obtained a write lock, then
only that process can be in its critical section:

s: VAR System

countInv(s): bool = s ‘numberOfThreads = count(s ‘threads)

waitingWritersInv(s): bool = s ‘waitingWriters = waitingWriters(s)
waitingReadersInv(s): bool = s ‘waitingReaders = waitingReaders(s)

statusInv(s): bool = ∀(tid:ThreadID):
LET thr = s ‘threads(tid) IN

thr ‘status = WWAIT∨ thr ‘status = WBLOCKED ∨
thr ‘status = RWAIT∨ thr ‘status = RBLOCKED ⇒ thr ‘current = 0

writeLockedByInv(s) : bool = LET twlb = s ‘currentWriter IN

twlb 6= NT ⇒ s ‘numberOfThreads = 1∧
s ‘threads(twlb) ‘status = START∧ s ‘threads(twlb) ‘current > 0∧
∀(tid:ThreadID): tid 6= twlb ⇒ s ‘threads(tid) ‘current = 0))

validState?(s) : bool = countInv(s) ∧ waitingWritersInv(s) ∧
statusInv(s) ∧ writeLockedByInv(s) ∧ waitingReadersInv(s)
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Before trying to prove the invariant with PVS, we have first tested the above properties
(except for waitingWritersInv) and waitingReadersInv) in the Uppaal model to see
if they hold in the fixed size model (see Figure 5). The properties waitingWritersInv

and waitingReadersInv cannot be expressed in Uppaal because one cannot count the
number of processes residing in a specific location. The inspection of the above prop-
erties in Uppaal enables us to detect any mistakes in the invariant before spending
precious time on trying to prove them in PVS.

– A[]countCurrents() = numberOfThreads (Count Inv.) 6

– A[] ∀t ∈ ThreadId : Thread(t).WWait ∨ Thread(t).RWait∨
Thread(t).WBlocked ∨ Thread(t).RBlocked ⇒ current[t] = 0 (Status Inv.)

– A[]currentWriter 6= NT ⇒ (writeLockedBy Inv.)
numberOfThreads = 1 ∧
¬Thread(currentWriter).writeLockEnd ⇒ current[currentWriter] > 0 ∧
∀t ∈ ThreadId : t 6= currentWriter ⇒ current[t] = 0

Fig. 5. The invariants checked in Uppaal

The definition of the readlock function over the dependent type validState? im-
plies that automatically type checking conditions are generated. They oblige us to
prove that, if we are in a valid state, the transition to another state will yield a state
for which the invariant still holds. The proof itself is a straightforward, albeit large
(about 400 proof commands), case distinction with the help of some auxiliary lemmas.

4.4 No deadlock

The theorem-prover PVS does not have an innate notion of deadlock. If, however, we
consider the state-transition model as a directed graph, in which the edges are deter-
mined by the interleave function, deadlock can be detected in this state transition
graph by identifying a state for which there are no outgoing edges. This interpretation
of deadlock can be too limited. If, for example, there is a situation where a process
alters one of the state variables in a non terminating loop, the state-transition model
will yield an infinite graph and a deadlock will not be detected, because each state
has an outgoing edge. Still, all the other processes will not be able to make progress.
To obtain a more refined notion of deadlock, we define a well founded ordering on the
system state and show that for each state reachable from the starting state (except
for the starting state itself), there exists a transition to a smaller state according to
that ordering. The smallest element within the order is the starting state. This means
that each reachable state has a path back to the starting state and consequently it is
impossible for any process to remain in a such a loop indefinitely. Moreover, this also
covers the situation in which we would have a local deadlock (i.e. several but not all
processes are waiting for each other).

t : VAR ThreadInfo

starting? : PRED[ThreadInfo ] = { t | t ‘status = START∧ t ‘current = 0}

startingState(s: (validState?)): bool =
∀(tid:ThreadID): starting?(s ‘threads(tid))

In the starting state all processes are running and there are no locks.

6 countCurrents determines the number of threads having a current greater than 0.
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We create a well founded ordering by defining a state to become smaller if the num-
ber of waiting processes decreases or alternatively, if the number of waiting processes
remains the same and the total count of the number of processes that have obtained a
lock is decreasing. Well foundedness follows directly from the well foundedness of the
lexicographical ordering on pairs of natural numbers.

smallerState(s2 , s1 : (validState?)) : bool =
numberWaiting(s2) < numberWaiting(s1) ∨

numberWaiting(s2) = numberWaiting(s1) ∧
totalCount(s2) < totalCount(s1)

The numberWaiting function as well as the totalCount function are recursive functions
on the array with thread information yielding the number of processes that have either
a RBLOCKED, RWAIT, WBLOCKED or WWAIT status, and sum of all current fields respectively.

Once we have established that each state transition maintains the invariant, all we
have to prove is that each transition, except for the starting state will possibly result in
a state that is smaller. This is the noDeadlock theorem. Proving this theorem is mainly
a case distinction with a couple of inductive proofs thrown in for good measure. The
induction is needed to establish that the increase and decrease in the variables can only
happen if certain preconditions are met. The proof takes about 300 proof commands.

noDeadlock: THEOREM

∀(s1: (validState?)) : ¬ startingState(s1) ⇒
∃(s2: (validState?)) : interleave(s1 , s2) ∧ smallerState(s2 , s1)

5 Related and future Work

Several studies investigated either the conversion of code to state transition models,
as is done e.g. in [28] with mcrl2 or the transformation of a state transition model
specified in a model checker to a state transition model specified in a theorem prover,
as is done e.g. in [16] using VeriTech. With the tool TAME one can specify a time
automaton directly in the theorem prover PVS [3]. For the purpose of developing
consistent requirement specifications, the transformation of specifications in Uppaal
[17] to specifications in PVS has been studied in [9].

In [22] model checking and theorem proving are combined to analyze the classic
(non-reentrant) Readers/Writers problem. The authors do not start with actual source
code but with a tabular specification that can be translated straightforwardly into
SPIN and PVS. Safety and clean completion properties are derived semi-automatically.
Model checking is used to validate potential invariants.

[13] reports on experiments in combing theorem proving with model checking for
verifying transition systems. The complexity of systems is reduced abstracting out
sources for unboundedness using theorem proving, resulting in an bounded system
suited for being model checked. One of the main difficulties is that formal proof tech-
niques are usually not scalable to real sized systems without an extra effort to abstract
the system manually to a suitable model.

The verification framework SAL (See [25]) combines different analysis tools and
techniques for analyzing transition systems. Besides model checking and theorem prov-
ing it provides program slicing, abstraction and invariant generation.

In [12] part of an aircraft control system is analyzed, using a theorem prover. This
experiment was previously performed on a single configuration with a model checker. A
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technique called feature-based decomposition is proposed to determine inductive invari-
ants. It appears that this approach admits incremental extension of an initially simple
base model making it better scalable than traditional techniques.

Java Pathfinder (JPF) [29] operates directly on Java making a transformation of
source code superfluous. However, this tool works on a complete program, such that
it is much more difficult to create abstractions. The extension of JPF with symbolic
execution as discussed by [1] might be a solution to this problem.

An alternative for JPF is Bandera [7], which translates Java programs to the input
languages of SMV and SPIN. Like in JPF, it is difficult to analyse separate pieces of
code in Bandera. There is an interesting connection between Bandera and PVS. To
express that properties do not depend on specific values, Bandera provides a dedicated
language for specifying abstractions, i.e. concrete values are automatically replaced by
abstract values, thus reducing the state space. The introduction of these abstract values
may lead to prove obligations which can be expressed and proven in PVS.

In [24] a model checking method is given which uses an extension of JML [18] to
check properties of multi-threaded Java programs.

With Zing [2] on the one hand models can be created from source code and on the
other hand executable versions of the transition relation of a model can be generated
from the model. This has been used successfully by Microsoft to model check parts of
their concurrency libraries.

Future work

The methodology used (creating in a structured way a model close to the code, model
checking it first and proving it afterwards) proved to be very valuable. We found a
bug, improved the code, extended the capabilities of the code and proved it correct.
One can say that the model checker was used to develop the formal model which was
proven with the theorem prover. This decreased significantly the time investment of
the use of a theorem prover to enhance reliability. However, every model was created
manually. We identified several opportunities for tool support and further research.

Model checked related to source code Tool support could be helpful here: not
only to ’translate’ the code from the source language to the model checker’s lan-
guage. It could also be used to record the abstractions that are made. In this case
that were: basic locks → lock process model, hash tables → arrays, threads →
processes and some name changes. A tool that recorded these abstractions, could
assist in creating trusted source code from the model checked model.

Model checked related to model proven It would be interesting to prove that
the model in the theorem prover is equivalent with the model checked. Interest-
ing methods to do this would be using a semantic compiler, as was done in the
European Robin project [27], or employing a specially designed formal library for
models created with a model checker, like e.g. TAME [3].

Model proven related to source code Another interesting future research option
is to investigate generating code from the fully proven model. This could be
code generated from code-carrying theories [15] or it could be proof-carrying code
through the use of refinement techniques [4].

6 Concluding remarks

We have investigated Trolltech’s widely used industrial implementation of the reen-
trant readers-writers problem. Model checking revealed an error in the implementation.
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Trolltech was informed about the bug. Recently, Trolltech released a new version of the
thread library (version 4.4) in which the error was repaired. However, the new version
of the Qt library is still only weakly reentrant, not admitting threads that have write
access to do a read lock. This limitation unnecessarily hampers modular programming.

The improved Readers-Writers model described in this paper is deadlock free and
strongly reentrant. The model was first developed and checked for a limited number of
processes using a model checker. Then, the properties were proven for any number of
processes using a theorem prover.
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